Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Bitte beachten Sie
Von Mittwoch, dem 12.11.2025 ab 23:00 Uhr bis Donnerstag, dem 13.11.2025 bis 07:00 Uhr finden Wartungsarbeiten bei unserem externen E-Book Dienstleister statt. Daher bitten wir Sie Ihre E-Book Bestellung außerhalb dieses Zeitraums durchzuführen. Wir bitten um Ihr Verständnis. Bei Problemen und Rückfragen kontaktieren Sie gerne unseren Schweitzer Fachinformationen E-Book Support.
"Great Expectations Checkpoints in Data Validation" In "Great Expectations Checkpoints in Data Validation," readers are invited into a comprehensive exploration of data quality assurance in modern data ecosystems. The book opens with foundational principles-covering data quality metrics, validation types, and the crucial role validation plays throughout the data lifecycle. Readers gain insights into the tangible risks of inadequate validation, the evolving landscape of validation frameworks, and the pressing demands for scalability and automation in today's distributed data pipelines. Building on these essentials, the book offers a deep dive into the architecture and workings of the Great Expectations ecosystem-the leading open-source framework for data validation. Each chapter meticulously dissects the core components, from expectation suites to execution engines and automated validation reports. The author delves into advanced checkpoint configurations, modularization, integration with orchestration tools, and strategies for tailoring expectations to custom business requirements. Practical guidance is provided for both batch and streaming data contexts, with a special focus on enterprise-scale operations, governance, security, and regulatory compliance. Rounding out its technical depth, "Great Expectations Checkpoints in Data Validation" looks to the future of data trust and reliability. It examines innovations such as AI-assisted validation, self-healing data pipelines, and validation-as-a-service. Through rich case studies and forward-thinking analysis, the book serves as an indispensable reference for data engineers, architects, and analytics leaders striving to instill confidence, automation, and rigor into their organizational data assets.
Far more than a simple validation library, Great Expectations represents a modular, extensible foundation for orchestrating trust in data. This chapter peels back the layers of its architecture and ecosystem, spotlighting how its innovative abstractions enable seamless integration, observability, and collaboration across heterogeneous data landscapes. Prepare to deconstruct the moving parts, reveal their interdependencies, and discover how Great Expectations scales from isolated scripts to enterprise-wide guardianship of data quality.
Great Expectations provides a robust framework designed to enforce data quality through a modular and extensible architecture. At its foundation lie four cardinal abstractions: Expectations, Data Sources, Data Contexts, and Checkpoints. These components collectively form an interoperable ecosystem that facilitates expressive, maintainable, and testable data validation workflows within contemporary data engineering environments.
Expectations serve as declarative assertions about data characteristics. More formally, an Expectation is a parametrized predicate defining constraints on columnar, table-level, or domain-specific properties. Each Expectation object encapsulates the logic required to evaluate whether the data satisfies specified conditions, such as value ranges, uniqueness, distributional properties, or relationships between columns. Structurally, an Expectation consists of:
Expectation evaluations produce structured validation results containing verdicts such as success, failure, or partial expectation results, enriched with diagnostics and summary statistics. These results are designed to be serialized and consumed by downstream components for reporting or automated actions.
Data Sources abstract the ingestion points and computational backends that provide data batches to validate. Each Data Source acts as an adapter layer wrapping connections and query mechanics for one or more storage platforms. The architecture supports heterogeneous sources-ranging from file-based systems (CSV, Parquet) to relational databases and distributed analytic engines. Internally, a Data Source encapsulates:
This layer ensures that Expectation evaluations remain agnostic of the data storage and processing backend, enabling portability of validation workflows across diverse environments.
Data Contexts embody the runtime environment and configuration state centralizing all validation-related artifacts. The Data Context manages lifecycle aspects, orchestrating access to Expectation Suites, Data Sources, Checkpoints, and the validation store. Internally, it maintains:
The Data Context offers high-level APIs granting programmatic control and integration within CI/CD pipelines, orchestrators, and interactive analysis environments. It promotes separation of concerns by decoupling declarative Expectation definitions from execution and monitoring logic.
Checkpoints define executable validation pipelines binding together Expectations and data batches within an operational schedule or trigger framework. A Checkpoint configuration specifies:
At runtime, Checkpoints instantiate concrete validation jobs that generate comprehensive validation artifacts and enforce quality gates. The modularity of Checkpoints enables complex orchestrations where multiple Data Contexts and Data Sources coalesce, facilitating multi-tenant and multi-environment deployments.
Interaction patterns and architectural cohesion arise from the clear interfaces and roles defined among these components. The Data Context acts as the nucleus, coordinating access to Data Sources for data retrieval, referencing Expectations for quality assertions, and managing Checkpoints to trigger validation workflows. Data Sources provide data batches on demand, while Expectation Suites specify the criteria applied against those batches, producing Validation Results that feed back into the Data Context's stores. Checkpoints operationalize these configurations, generating repeatable, automated validation runs.
This architecture enables:
In synthesis, these core abstractions instantiate the conceptual model enabling Great Expectations to provide a unified, declarative, and operationally robust data validation framework. Their internal structures codify domain-specific knowledge while respecting principles of modularity and separation of concerns, which is critical in modern data stack implementations.
Great Expectations (GE) facilitates robust data validation through an abstraction layer that effectively decouples data assets from their physical storage and access mechanisms. This abstraction ensures that data validation logic remains environment-agnostic and reproducible in varied operational contexts, whether the underlying data reside in relational databases, file systems, or cloud-native storage platforms.
At the core, a Data Asset in GE represents a concrete set of data subject to validation. These data assets can be tables, files, streams, or any structured data repository. The abstraction begins by defining logical representations of these assets irrespective of their physical footprint. Internally, data assets are modeled as instances of classes deriving from the base Dataset or Batch constructs, which encapsulate the behavior and metadata necessary for validation.
Data Connectors serve as the pivotal mechanism by which GE discovers and maps data assets to in-code entities. They function as configuration-driven adapters, responsible for enumerating available data, organizing them into batches, and constructing the corresponding execution context. Great Expectations supports several Data Connector paradigms, each suited for different data source types:
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: ePUBKopierschutz: ohne DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „glatten” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.