Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Bitte beachten Sie
Von Mittwoch, dem 12.11.2025 ab 23:00 Uhr bis Donnerstag, dem 13.11.2025 bis 07:00 Uhr finden Wartungsarbeiten bei unserem externen E-Book Dienstleister statt. Daher bitten wir Sie Ihre E-Book Bestellung außerhalb dieses Zeitraums durchzuführen. Wir bitten um Ihr Verständnis. Bei Problemen und Rückfragen kontaktieren Sie gerne unseren Schweitzer Fachinformationen E-Book Support.
"Feast-Spark Engineering Essentials" Feast-Spark Engineering Essentials is a comprehensive guide that bridges the latest advances in feature engineering with production-grade machine learning operations. The book delves deep into the architectural foundations of Feast as a feature store and Apache Spark as a distributed data processing engine, offering a detailed understanding of how their integration empowers scalable, reliable ML pipelines. Readers are introduced to the critical motivations driving Feast-Spark synergy, with clear explanations of data modeling, entity design, and the practicalities of end-to-end pipeline orchestration that meet the demands of modern MLOps. Through meticulously structured chapters, the book covers the entire feature engineering lifecycle, from creation, extraction, and transformation to advanced topics like automated validation, versioning, and drift detection. It discusses robust engineering practices for both batch and real-time ingestion, optimized transformations, and operational best practices required to build and maintain large-scale feature pipelines. Special attention is given to storage backends, high availability, resource scaling, and multi-region deployments, ensuring that enterprises can confidently implement reliable and cost-effective solutions. Feast-Spark Engineering Essentials stands out by addressing not only technical integration but also the operational realities of security, privacy, and compliance in regulated industries. Real-world case studies and emerging patterns provide actionable insight for both engineers and architects, encompassing governance, observability, cross-team collaboration, and the future evolution of feature store technology. The book is an indispensable resource for anyone building, operating, or scaling feature engineering infrastructure at the intersection of data and machine learning.
Unlock the full potential of machine learning by mastering the art and science of feature engineering at scale. In this chapter, we chart the sophisticated journey of raw data as it's transformed into high-value features, validated, cataloged, and operationalized-leveraging the powerful tandem of Feast and Spark. Explore deeply technical patterns and practical strategies that ensure your feature pipelines are robust, reproducible, and ready to fuel production ML systems.
In large-scale machine learning pipelines, feature creation presents a critical stage that directly impacts both model accuracy and system performance. When operating within a Spark environment, the engineering of features from heterogeneous data sources must leverage distributed computing paradigms to maintain scalability while adhering to rigorous quality and relevance criteria. This section delves into sophisticated techniques for feature extraction, selection, and transformation optimized for Spark, with an emphasis on designing pipelines that integrate seamlessly with Feast for feature serving.
Extraction from Diverse Data Sources
Feature extraction begins by interfacing with varied raw data repositories, including structured databases, log files, event streams, and external APIs. Spark's DataFrame API, coupled with Catalyst optimizer, offers a flexible abstraction enabling efficient querying and transformation regardless of source. Key design patterns involve:
Partition pruning and predicate pushdown at the source further optimize input data volume, essential when scaling to petabyte-class datasets.
Feature Selection and Filtering Patterns
High-dimensional raw data often contains noisy or irrelevant attributes that degrade model generalization and training efficiency. Within Spark, feature selection integrates statistical and heuristic strategies embedded in scalable workflows:
Automating candidate feature selection via pipeline parameter tuning and cross-validation ensures robust feature sets that generalize well across data shifts.
Complex Feature Transformations in Spark
Feature transformations encode domain knowledge and facilitate model interpretability and performance. The high expressivity of Spark SQL and DataFrame APIs enables a rich set of transformation patterns:
Chaining transformers in Spark facilitates the creation of modular, reusable transformation sequences, which can be scheduled and monitored effectively across production clusters.
Preparing Features for Feast Ingestion
Integration with Feast-an open-source feature store-is essential for operationalizing features in online and batch serving environments. Preparing data for Feast ingestion demands careful attention to schema alignment, temporal consistency, and performance optimization:
Performance profiling and resource tuning in Spark clusters ensure that feature computation pipelines meet latency requirements for real-time model consumption.
Scalability and Efficiency Considerations
Achieving scale and efficiency in feature creation necessitates a holistic approach encompassing algorithmic design and cluster resource management:
Integrating these strategies ensures a robust, maintainable, and responsive feature engineering system capable of supporting diverse, evolving machine learning workloads.
import org.apache.spark.ml.Pipeline import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler, PCA, StandardScaler}...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: ePUBKopierschutz: ohne DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „glatten” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.