Micro- and Nanotechnology in Vaccine Development

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 20. September 2016
  • |
  • 460 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-40029-9 (ISBN)
 

This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress.

MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles.


  • Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development
  • Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development
  • Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines
  • Englisch
  • Philadelphia
  • |
  • USA
Elsevier Science
  • 17,22 MB
978-0-323-40029-9 (9780323400299)
0323400299 (0323400299)
weitere Ausgaben werden ermittelt
  • Cover
  • Title page
  • Copyright page
  • Contents
  • List of Contributors
  • Introduction
  • Chapter One - The Growing Influence of Nanotechnology in Our Lives
  • 1.1 - Nanomaterials and Fabrication Techniques
  • 1.1.1 - Nanoparticles
  • 1.1.2 - Nanowires
  • 1.1.3 - Nanofilms
  • 1.2 - Nanomaterials in Modern Life
  • 1.2.1 - Zero-dimensional nanostructures
  • 1.2.2 - One-dimensional nanostructures
  • 1.2.3 - Two-dimensional nanostructures
  • 1.3 - Conclusions
  • References
  • Chapter Two - Nanotechnology in Medical Research
  • 2.1 - Introduction
  • 2.2 - Diagnostic Nanoparticles
  • 2.2.1 - Imaging agents
  • 2.2.1.1 - Contrast Agents for MRI
  • 2.2.1.2 - Contrast Agents for CT
  • 2.2.1.3 - PET and SPECT Tracers
  • 2.2.1.4 - Optical Imaging Agents
  • 2.2.1.5 - Ultrasound Imaging Agents
  • 2.2.1.6 - Photoacoustic Contrast Agents
  • 2.2.2 - Nanoparticle biosensors
  • 2.2.2.1 - Sensing of Biomarkers
  • 2.2.2.2 - Sensing of Infectious Diseases
  • 2.3 - Therapeutic Nanoparticles
  • 2.3.1 - Delivery systems and therapeutics
  • 2.3.2 - Drug loading
  • 2.3.3 - Targeted nanoparticles
  • 2.4 - Multimodal Nanoparticles
  • 2.4.1 - Multimodal imaging agents
  • 2.4.2 - Theranostics
  • 2.4.3 - Personalized multimodal therapy
  • 2.5 - In Development
  • References
  • Chapter Three - Introduction to Vaccines and Vaccination
  • 3.1 - Introduction to Vaccines and Vaccination
  • 3.1.1 - A brief history of vaccines and vaccination
  • 3.1.2 - The rationale behind vaccination
  • 3.1.3 - Vaccine subtypes
  • 3.1.4 - Immunization sites and devices
  • 3.1.4.1 - Intramuscular Immunizations
  • 3.1.4.2 - Subcutaneous Immunizations
  • 3.1.4.3 - Cutaneous Immunizations
  • 3.1.4.4 - Mucosal Immunizations
  • 3.2 - Challenges
  • 3.3 - Conclusions
  • References
  • Chapter Four - Overview of the Immune System
  • 4.1 - A Short History of Immunology
  • 4.2 - Immune Responses to Infection
  • 4.3 - Innate Immunity
  • 4.4 - Induced Innate Immune System
  • 4.4.1 - Phagocytes
  • 4.4.2 - Pattern recognition by innate immune cells
  • 4.4.3 - Dendritic cells
  • 4.4.4 - Natural killer cells
  • 4.4.5 - Mast cells and basophils
  • 4.5 - The Adaptive Immune System
  • 4.6 - Cells of the Adaptive Immune System
  • 4.6.1 - T cells
  • 4.6.2 - B cells
  • 4.6.3 - Immunological memory
  • 4.7 - Immunoglobulin Classes and Function
  • 4.8 - Blurring the Lines Between Innate and Adaptive Immunity
  • 4.8.1 - Innate-like lymphocytes
  • 4.8.2 - Innate immune cells with memory
  • 4.9 - Concluding Remarks
  • References
  • Chapter Five - The Role of Antigen Presentation and Innate Immunity During Immune Induction by Particulate Antigens
  • 5.1 - Introduction to Vaccine Adjuvants
  • 5.2 - The Innate Immune System as a Regulator of Adaptive Immunity
  • 5.2.1 - The relationship between innate and adaptive immune systems
  • 5.2.2 - Pattern recognition receptors and their ligands
  • 5.3 - Nanoparticle Vaccine Delivery Systems
  • 5.3.1 - Antigens attached to inert nanoparticles
  • 5.3.2 - Particulate antigens containing innate immune stimulators
  • 5.4 - Targeting APCs at the Site of Vaccination and in the Draining Lymph Node
  • 5.4.1 - Immune responses in the local lymph node
  • 5.4.2 - Immune responses linking the injection site to immunity in the lymph node as measured in afferent and efferent lymph
  • 5.5 - Concluding Remarks
  • References
  • Chapter Six - Inflammatory/Noninflammatory Adjuvants and Nanotechnology-The Secret to Vaccine Design
  • 6.1 - Current Challenges Facing Vaccine Design
  • 6.2 - Inflammation: Angel or Devil?
  • 6.3 - Adjuvant Selection for Vaccine Design
  • 6.4 - Mechanisms of Conventional Adjuvants
  • 6.4.1 - Alum
  • 6.4.2 - MF59
  • 6.4.3 - TLR agonists
  • 6.5 - Noninflammatory Adjuvants: Introducing Nanoparticles as Vaccine Adjuvants
  • 6.5.1 - Adjuvant effects of nanoparticles themselves
  • 6.5.2 - Nanoparticle modulation of immune cells can be independent of inflammatory mechanisms
  • Summary
  • References
  • Chapter Seven - Vaccine Adjuvant Nanotechnologies
  • 7.1 - Introduction
  • 7.2 - Emulsion Adjuvants
  • 7.2.1 - Other organic nanoparticulate adjuvants
  • 7.2.2 - Inorganic nanoparticulate adjuvants
  • 7.2.3 - Self-assembling virus-like particles
  • 7.2.4 - Polypeptide-based self-assembled adjuvants
  • 7.2.5 - Liposome and virosome particles
  • 7.2.6 - Electrostatic particle self-assembly
  • 7.2.7 - Lipid-like self-assembling adjuvant particles
  • 7.2.8 - QS21 and immune-stimulating complexes
  • 7.3 - Microparticulate Polysaccharide Adjuvants
  • 7.4 - Immune Targeting Strategies
  • 7.5 - Innate Immune Receptor Ligands
  • 7.6 - Template-Based Nanoparticle Manufacturing Methods
  • 7.6.1 - Emulsions for template-based particle assembly
  • 7.6.2 - PRINT-based adjuvant production
  • 7.7 - Conclusions
  • References
  • Chapter Eight - Nanoparticle-Based Peptide Vaccines
  • 8.1 - Introduction
  • 8.2 - Vaccine Components
  • 8.2.1 - Traditional microbial vaccines
  • 8.2.2 - Downsizing to peptide antigens
  • 8.2.3 - Size of vaccine components
  • 8.2.4 - Size issues of particle-based vaccines
  • 8.3 - Utility of synthetic peptides for subunit vaccines
  • 8.4 - Upsizing Peptide Antigens
  • 8.4.1 - Multiple antigen peptide system
  • 8.4.2 - Multiple antigen-presenting nanoparticles
  • 8.5 - Lipopeptide-Based Nanovaccines
  • 8.6 - Self-assembling peptides
  • 8.6.1 - Self-assembling protein antigens
  • 8.6.2 - Self-assembling peptide-based nanovaccines
  • 8.7 - Concluding Remarks
  • Acknowledgments
  • References
  • Chapter Nine - Microparticles and Nanoparticles for Cancer-Targeting Vaccines
  • 9.1 - Introduction
  • 9.1.1 - Adjuvants
  • 9.1.2 - Codelivery of antigens and adjuvants
  • 9.1.3 - Microparticles and nanoparticles for cancer vaccines
  • 9.1.4 - Delivery of vaccines with biodegradable particles
  • 9.1.5 - The potential effect of particle size on cancer vaccinations
  • 9.1.6 - Novel applications for the delivery of CpG ODN with microparticle- and nanoparticle-based cancer vaccines
  • 9.1.7 - Use of microparticles in heterologous prime-boost vaccinations
  • 9.2 - Conclusions
  • References
  • Chapter Ten - Polymer-Based Nanoparticles as Modern Vaccine Delivery Systems
  • 10.1 - Introduction
  • 10.2 - Immune Defense Mechanisms: From Innate to Adaptive Immunity
  • 10.3 - Design of Polymeric Nanovaccines
  • 10.3.1 - Antigen content of nanoparticles
  • 10.3.2 - Nanoparticles as delivery systems
  • 10.3.3 - Surface modification for immune cell targeting
  • 10.3.4 - Modulation of antigen-processing pathways
  • 10.4 - Polymers Used for Nanovaccine Design
  • 10.4.1 - Poly(d,l-lactic-co-glycolic acid) and derivatives
  • 10.4.2 - Polystyrene and polypropylene
  • 10.4.3 - Polyethylenimine
  • 10.4.4 - Chitosan
  • 10.4.5 - Dendrimers
  • 10.4.6 - Self-assembling amphiphilic polymers
  • 10.5 - Routes of Administrations
  • 10.6 - Polymer-Based Nanoparticles in Clinical Trials
  • 10.7 - Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • Chapter Eleven - Virus-Like Particles
  • 11.1 - Introduction
  • 11.1.1 - General properties of VLPs
  • 11.1.2 - VLPs as platform for antigen presentation
  • 11.1.3 - Immunogenicity of virus-like particles
  • 11.1.4 - VLP-based vaccines in human clinical use
  • 11.1.5 - Computational design of VLP-based vaccines
  • 11.1.6 - Current and emerging paradigms for VLP production
  • 11.2 - Conclusions
  • References
  • Chapter Twelve - Liposomes as a Vaccine Delivery System
  • 12.1 - Vaccines and Vaccinations
  • 12.2 - Liposomes: A Brief Introduction
  • 12.2.1 - Formulation considerations of liposomes and their impact on immunogenicity
  • 12.2.2 - Targeting ability of liposomes
  • 12.3 - Influence of Liposome Size and Surface Charge on Vaccine Responses
  • 12.3.1 - Size
  • 12.3.2 - Surface charge
  • 12.4 - Types of Liposomes
  • 12.4.1 - Virosomes
  • 12.4.2 - Vesosomes
  • 12.4.3 - Niosomes
  • 12.4.4 - Bilosomes
  • 12.4.5 - pH fusogenic liposomes
  • 12.4.6 - Ethosomes
  • 12.4.7 - Archaesomes
  • 12.4.8 - Proteoliposome
  • 12.5 - Methods of Liposomal Manufacturing
  • 12.5.1 - Mechanical methods
  • 12.5.1.1 - Preparation by film hydration
  • 12.5.1.2 - Microfluidization
  • 12.5.2 - Replacement of organic solvents by aqueous media
  • 12.5.2.1 - Ethanol Injection
  • 12.5.2.2 - Reverse Phase Evaporation
  • 12.5.3 - Detergent depletion method
  • 12.6 - Size Manipulation
  • 12.6.1 - Homogenization
  • 12.6.2 - Sonication
  • 12.7 - Factors to Consider for Scaling Up of Vaccine Production
  • 12.8 - Conclusions
  • References
  • Chapter Thirteen - Nanomaterials Based on Lipids for Vaccine Development
  • 13.1 - The Importance of Particles As Adjuvants
  • 13.2 - Lipid-Covered Particles and Bilayer Fragments As Adjuvants
  • 13.3 - Lipidic Immunostimulants and Solid Lipid Nanoparticles
  • 13.4 - Conclusions
  • Acknowledgments
  • References
  • Chapter Fourteen - Microparticles for Vaccine Delivery
  • 14.1 - Introduction
  • 14.1.1 - MPs: a versatile platform in vaccine delivery
  • 14.1.2 - MPs as delivery systems
  • 14.1.2.1 - DNA Vaccines
  • 14.1.3 - Immunopotentiator/adjuvants
  • 14.1.4 - For HIV vaccines
  • 14.1.5 - Cancer vaccine delivery
  • 14.2 - Conclusions
  • References
  • Chapter Fifteen - Nasal Vaccine Delivery
  • 15.1 - Introduction
  • 15.1.1 - Mucosal infections
  • 15.1.2 - Importance of nasal vaccines
  • 15.1.3 - Benefits and challenges of developing nasal vaccines
  • 15.2 - The Nasal Route
  • 15.2.1 - Nasal anatomy
  • 15.2.2 - Nasal morphology and physiology
  • 15.2.2.1 - Nasal Secretions
  • 15.2.2.2 - Nasal Mucosa
  • 15.2.2.3 - Olfactory Region
  • 15.2.2.4 - Blood Supply to Nasal Cavity
  • 15.3 - Immune Response to Mucosal Infection
  • 15.3.1 - Antigen uptake in the nose
  • 15.3.2 - Factors affecting nasal absorption
  • 15.3.2.1 - Nasal Physiological Factor
  • 15.3.2.2 - Physiochemical Properties of Nasal Vaccine Formulation
  • 15.3.3 - Deposition and clearance of antigens
  • 15.3.4 - Nasal immune response
  • 15.3.5 - Protective response against mucosal infection
  • 15.3.5.1 - Innate Immunity at the Mucosal Surface
  • 15.3.5.2 - Adaptive Immunity at the Mucosal Surface
  • 15.4 - Nasal Vaccine Delivery Systems
  • 15.4.1 - Replicating delivery system
  • 15.4.2 - Nonreplicating delivery system
  • 15.4.2.1 - Liposomes
  • 15.4.2.2 - Micro- and Nanoparticulate Systems
  • 15.4.2.3 - Immune Stimulating Complexes
  • 15.4.2.4 - Virus-Like Particles
  • 15.4.2.5 - Emulsions
  • 15.4.2.6 - Bioadhesive Delivery Systems
  • 15.5 - Different Dosage Forms of Vaccine Through the Nasal Route
  • 15.5.1 - Nasal drops
  • 15.5.2 - Nasal powder
  • 15.5.3 - Aerosol
  • 15.5.4 - Nasal gel
  • Summary
  • References
  • Chapter Sixteen - Toward Mucosal DNA Delivery: Structural Modularity in Vaccine Platform Design
  • 16.1 - Introduction
  • 16.2 - Discovery and Critical Landmarks in HEV Biology
  • 16.3 - HEV Biology and the Capsid Protein
  • 16.3.1 - Early nonstructural ORF1 protein
  • 16.3.2 - Late nonstructural ORF3 protein
  • 16.3.3 - Major component of the capsid protein ORF2
  • 16.4 - Life Cycle of HEV Makes it Amenable to Being Used as an Orally Delivered Drug
  • 16.4.1 - Entry
  • 16.4.2 - Uncoating and escape from endosomes
  • 16.4.3 - Replication
  • 16.4.4 - Assembly
  • 16.4.5 - Egress
  • 16.5 - Virus-like Particles as Drug Delivery Systems/Vaccine Epitope Carriers
  • 16.6 - HEV VLPs are Well Suited as Nanocarriers for Oral Delivery
  • 16.6.1 - Modularity and modifiability of HEV capsid structure
  • 16.6.2 - Resistance to gut environmental conditions and protease cleavage
  • 16.6.3 - Self-immunity to HEV is preventable by modification of the P domain
  • 16.6.4 - HEV VLPs can encapsulate foreign DNA plasmids and release them in cells
  • 16.6.5 - Ease and economy of scalability and administration
  • Acknowledgments
  • References
  • Chapter Seventeen - Nano- and Microtechnology in Skin Delivery of Vaccines
  • 17.1 - Introduction
  • 17.2 - Immunization via Skin
  • 17.2.1 - Advantage of skin as a vaccination target
  • 17.2.2 - The immune barrier properties of the skin
  • 17.3 - Nano/Microvaccination Techniques for Skin Delivery
  • 17.3.1 - Nanoparticle-based transcutaneous vaccination
  • 17.3.1.1 - Flexible Nanoparticles
  • 17.3.1.1.1 - Liposomes
  • 17.3.1.1.2 - Nanoemulsions
  • 17.3.1.1.3 - Nanogels
  • 17.3.1.2 - Solid nanoparticles
  • 17.3.1.2.1 - Polymeric Nanoparticles
  • 17.3.1.2.2 - Inorganic Nanoparticles
  • 17.3.1.2.3 - Delivery Pathways
  • 17.3.2 - Microdevices
  • 17.3.2.1 - Microneedles
  • 17.3.2.1.1 - Solid Microneedles
  • 17.3.2.1.2 - Coated Microneedles
  • 17.3.2.1.3 - Hollow Microneedles
  • 17.3.2.1.4 - Dissolving Microneedles
  • 17.3.2.2 - Elongated Microparticles
  • 17.4 - Concluding Remarks
  • References
  • Chapter Eighteen - Nanopatches for Vaccine Delivery
  • 18.1 - The Context of the Mechanical Vaccination Devices
  • 18.1.1 - Liquid jet injectors
  • 18.1.2 - High-speed particle injection
  • 18.1.3 - Solid formulation injectors
  • 18.1.4 - Intradermal injections/adaptors
  • 18.1.5 - Microneedles
  • 18.1.6 - The Nanopatch
  • 18.2 - Designing a Device to Reach Precise Locations in Skin
  • 18.3 - Immune Responses to and Hypothesized Mechanisms of the Nanopatch
  • 18.3.1 - Mode of action
  • 18.4 - Thermostability of Vaccine Coating
  • 18.5 - Clinical/Medical Device Technology Implications
  • 18.5.1 - Acceptability: healthcare provider and patient
  • 18.5.2 - Cost
  • 18.5.3 - Challenges
  • 18.6 - Conclusions
  • References
  • Chapter Nineteen - Rationale for Pulmonary Vaccine Delivery: Formulation and Device Considerations
  • 19.1 - Introduction
  • 19.2 - Anatomy of the Human Lung
  • 19.3 - Pulmonary Mucosal Vaccination
  • 19.3.1 - Innate immunity
  • 19.3.2 - Adaptive immunity
  • 19.4 - Rationale for Pulmonary Delivery of Vaccines
  • 19.5 - Challenges in Delivery of Vaccines via Inhalation
  • 19.6 - Carriers for Lung Vaccine Delivery
  • 19.6.1 - Micro- and nanoparticulate delivery systems
  • 19.6.1.1 - Immune Response Developed From These Systems
  • 19.6.1.2 - Influence of Size, Charge, and Shape
  • 19.6.1.3 - Polymer-Based Particulate Systems
  • 19.7 - Dry Powder Vaccines
  • 19.7.1 - Freeze drying
  • 19.7.2 - Spray drying
  • 19.7.3 - Spray freeze drying
  • 19.8 - Conclusions
  • References
  • Chapter Twenty - Nanotoxicology and Nanovaccines
  • 20.1 - Introduction
  • 20.2 - General Toxicological Pathways for Nanoparticles
  • 20.2.1 - Oxidative stress
  • 20.2.2 - Inflammation
  • 20.2.3 - Genotoxicity
  • 20.3 - Acute and Chronic Toxicity
  • 20.3.1 - Acute toxicity of nanoparticles
  • 20.3.2 - Subchronic and chronic toxicity of nanoparticles
  • 20.3.3 - Polymeric and other organic nanoparticles
  • 20.4 - Toxicology of Nanovaccines
  • 20.4.1 - Antigen-nanoparticle interactions
  • 20.4.2 - Adjuvant-nanoparticle interactions
  • 20.4.3 - Nanovaccines and hypercytokinemia
  • 20.5 - Concluding Remarks
  • References
  • Chapter Twenty One - Regulatory Development of Nanotechnology-Based Vaccines
  • 21.1 - Introduction
  • 21.2 - Current State of Nanomedicine Regulatory Framework
  • 21.3 - Major Aspects for Nanovaccine regulation
  • 21.4 - Nanovaccine Major Features and Related Concerns
  • 21.5 - Current Challenges for the Translation of Nanovaccines to Clinic Use
  • 21.6 - Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • Chapter Twenty Two - Commercial Aspects of Vaccine Development
  • 22.1 - Introduction
  • 22.2 - Challenges in Commercialization of Micro- and Nanotechnology Therapeutics
  • 22.3 - Challenges in Commercialization of Vaccines
  • 22.4 - Conclusions
  • References
  • Subject index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

190,40 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok