Bio-Nanoparticles

Biosynthesis and Sustainable Biotechnological Implications
 
 
Wiley-Blackwell (Verlag)
  • erschienen am 31. März 2015
  • |
  • 384 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-118-67734-6 (ISBN)
 
Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology.
Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use. Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.
weitere Ausgaben werden ermittelt
Om V. Singh, PhD, is an Associate Professor of Microbiology at the University of Pittsburgh, Bradford in Bradford, PA, USA.

1
DIVERSITY OF MICROBES IN SYNTHESIS OF METAL NANOPARTICLES: PROGRESS AND LIMITATIONS


Mahendra Rai

Department of Biotechnology, SGB Amravati University, Amravati Maharashtra, India; and Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, Campinas, SP, Brazil

Irena Maliszewska

Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Wybrzeze Wyspianskiego, Poland

Avinash Ingle, Indarchand Gupta, and Alka Yadav

Department of Biotechnology, SGB Amravati University, Amravati,Maharashtra, India

1.1. Introduction


Nanotechnology is a widely emerging field involving interdisciplinary subjects such as biology, physics, chemistry, and medicine (Bankar et al., 2010; Zhang, 2011; Rai and Ingle, 2012). Nanotechnology involves the synthesis of nanoparticles using the top-down and bottom-up approach (Kasthuri et al., 2008; Bankar et al., 2010; Nagajyothi and Lee, 2011). However, due to the growing environmental concern and the adverse effects of physical and chemical synthesis, most researchers are looking to the biological protocols for nanoparticle synthesis (Rai et al., 2008). The biological method of synthesis involves a wide diversity of biological entities that could be harnessed for the synthesis of metal nanoparticles (Sharma et al., 2009; Vaseeharan et al., 2010; Zhang et al., 2011a; Gupta et al., 2012; Rajesh et al., 2012). These biological agents emerge as an environmently friendly, clean, non-toxic agent for the synthesis of metal nanoparticles (Sastry et al., 2003; Bhattacharya and Gupta, 2005; Riddin et al., 2006; Duran et al., 2007; Ingle et al., 2008; Kumar and Yadav, 2009; Vaseeharan et al., 2010; Thakkar et al., 2011; Zhang et al., 2011b; Rajesh et al., 2012).

A wide array of microorganisms such as bacteria, fungi, yeast, algae, and actinomycetes are majorly employed as biological agents for the synthesis process (Kumar and Yadav, 2009; Satyavathi et al., 2010). The synthesis of metal nanoparticles employs both intracellular and extracellular methods (Sharma et al., 2009; Mallikarjuna et al., 2011). Some examples of these microbial agents include bacteria (Husseiny et al., 2007; Shahverdi et al., 2007, 2009), fungi (Kumar et al., 2007; Parikh et al., 2008; Gajbhiye et al., 2009), actinomycetes (Ahmad et al., 2003al Golinska et al., 2014), lichens (Shahi and Patra, 2003), and algae (Singaravelu et al., 2007; Chakraborty et al., 2009). These diverse groups of biological agents have many advantages over physical and chemical methods such as easy and simple scale-up, easy downstream processing, simpler biomass handling and recovery, and economic viability (Rai et al., 2009a; Thakkar et al., 2011; Renugadevi and Aswini, 2012). These different biological agents such as bacteria, fungi, yeast, algae, and acitnomycetes therefore demonstrate immense biodiversity in the synthesis of nanoparticles and lead to green nanotechnology (Vaseeharan et al., 2010; Singh et al., 2011, 2013; Thakkar et al., 2011).

The present review also deals with the diversity of microbes involved in the synthesis of metal nanoparticles. The possible mechanisms and different applications for the synthesis of metal nanoparticles are also discussed.

1.2. Synthesis of Nanoparticles by Bacteria


Although it is known that bacteria have the ability to produce various inorganic nanoparticles (e.g., metal, calcium, gypsum, silicon), research in this area is usually focused on the formation of metals and metals sulfide/oxide (Fig. 1.1).

Figure 1.1. Mechanisms of microbial fabrication of nanobiominerals, catalyzed by enzymatic reductive biotransformations of redox active metals, driven by a suitable electron donor such as hydrogen. In some cases, for example transformations of Fe(III) minerals and Se(IV), redox mediators such as AQDS (anthraquinone-2,6 disulfonate) are utilized to increase the kinetics of metal reduction and hence nanobiomineral formation.

Source: Lloyd, J.R., Byrne, J.M., Coker, V.S. 2011. Biotechnological synthesis of functional nanomaterials. Current Opinion in Biotechnology 22: 509-515. Copyright © 2011, Elsevier.

Different bacteria from different habitats and nutritional modes have been studied for the synthesis of metallic nanocrystals, as summarized in Table 1.1. Some of the earliest reports on the reduction and accumulation of inorganic particles in bacteria can be traced back to the 1960s, where zinc sulfide was described in sulfate-reducing bacteria (Temple and Le-Roux, 1964). Later studies in this area date back to the 1980s, when Beveridge and Murray (1980) described how the incubation of gold chloride with Bacillus subtilis resulted in the production of octahedral gold nanoparticles with a dimension of 5-25?nm within the bacterial cell. It is believed that organophosphate compounds secreted by the bacterium play an important role in the formation of these nanostructures (Southam and Beveridge, 1996). Another example of bacterial reduction and precipitation of gold was described by Kashefi and co-workers (2001). These authors demonstrated that iron-reducing anaerobic bacteria Shewanella algae can reduce gold ions in the presence of H2 gas, which results in the formation of 10-20?nm gold nanoparticles. It was further hypothesized that specific hydrogenase might be involved in the reduction of gold ions when hydrogen was used as an electron donor.

Table 1.1. List of different metallic nanoparticles synthesized by bacteria

Metallic material Bacteria (reference) Au0 Bacillus subtilis (Beveridge and Murray, 1980); Shewanella algae (Kashefi et al., 2001); Rhodopseudomonas capsulate (Kashefi et al., 2001; He et al., 2007, 2008); Pseudomonas aeruginosa (Karthikeyan and Beveridge, 2002); Lactobacilli strains (Nair and Pradeep, 2002); Thermomonospora sp. (Ahmad et al., 2003b); Rhodococcus sp. (Ahmad et al., 2003a); Ralstonia metallidurans (Reith et al., 2006); Actinobacter sp. (Bharde et al., 2007); Streptomyces viridogens strain HM10 (Balagurunathan et al., 2011); Streptomyces griseus (Derakhshan et al., 2012); Streptomyces hygroscopicus (Sadhasivam et al., 2012); Streptomyces sp. ERI-3 (Zonooz et al., 2012) Ag0 Pseudomonas stutzeri A259 (Klaus et al., 1996; Joerger et al., 2000); Corynebacterium sp. SH09 (Zhang et al., 2005); Enterobacteriaceae (Klebsiella pneumoniae, E. coli and Enterobacter cloacae) (Shahverdi et al., 2007); Morganella spp. (Parikh et al., 2008); Bacillus licheniformis (Kalishwaralal et al., 2008); Lactobacillus fermentum (De-Gusseme et al., 2010); Morganella psychrotolerans (Ramanathan et al., 2011); Escherichia coli AUCAS 112 (Kathiresan et al., 2010);
Idiomarina sp. PR58-8 (Seshadri et al., 2012) Fe3S4 M. magnetotacticum (Mann et al., 1984; Philipse and Maas, 2002); Magnetospiryllum (Farina et al., 1990); Sulfate-reducing bacteria (Mann et al., 1990); M. gryphiswaldense (Lang et al., 2006); Acinetobacter sp. (Bharde et al., 2008) Fe3O4,
Fe2O3 Magnetotactic bacteria (Blakemore, 1975; Mann et al., 1984); Geobacter metallireducens (Vali et al., 2004); Actinobacter sp. (Bharde et al., 2005) Pt0 Shewanella algae (Konishi et al., 2007) Pd0 Desulfovibrio desulfuricans (Yong et al., 2002a,b) Cu0 Serratia sp. (Hasan et al., 2008); E. coli (Singh et al., 2010) Co3O4 Marine cobalt-resistant bacterial strain (Kumar et al., 2008) CdS Clostridium thermoaceticum (Cunningham and Lundie, 1993); R. palustris (Bai et al., 2009) ZnS Sulfate-reducing bacteria (Labrenz et al., 2000) Se0 Thauera selenatis (DeMoll-Decker and Macy, 1993; Bledsoe et al., 1999; Sabaty et al., 2001); Rhizobium selenitireducens strain B1 (Hunter and Kuykendall, 2007; Hunter et al., 2007); E. coli (Avazeri et al., 1997); Clostridium pasteurianum (Yanke et al., 1995); Bacillus selenitireducens (Afkar et al., 2003); Pseudomonas stutzeri (Lortie et al., 1992); Wolinella succinogenes (Tomei et al., 1992); Enterobacter cloacae (Losi and Frankenberger, 1997); Pseudomonas aeruginosa (Yadav et al., 2008); Pseudomonas alkaphila (Zhang et al., 2011a) Te0 Sulfurospirillum barnesii, B. selenireducens (Baesman et al., 2007) Ti0 Lactobacillus sp. (Prasad et al., 2007), Bacillus sp. (Prakash et al., 2009) UO2 Micrococcus lactilyticus (Woolfolk and Whiteley, 1962); Alteromonas putrefaciens (Myers and Nealson, 1988); G. metallireducens GS-15 (Lovley et al., 1991); S. oneidensis...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

120,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen