Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development, Volume 263

Ceramic Transactions Volume 263
 
 
Standards Information Network (Verlag)
  • erschienen am 22. Juni 2017
  • |
  • 592 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-40753-9 (ISBN)
 
Global population growth and tremendous economic development has brought us to the crossroads of long-term sustainability and risk of irreversible changes in the ecosystem. Energy efficient and ecofriendly technologies and systems are critically needed for further growth and sustainable development. While ceramic matrix composites were originally developed to overcome problems associated with the brittle nature of monolithic ceramics, today the composites can be tailored for customized purposes and offer energy efficient and ecofriendly applications, including aerospace, ground transportation, and power generation systems. The 9th International Conference on High Temperature Ceramic Matrix Composites (HTCMC 9) was held in Toronto, Canada, June 26-30, 2016 to discuss challenges and opportunities in manufacturing, commercialization, and applications for these important material systems.
The Global Forum on Advanced Materials and Technologies for Sustainable Development (GFMAT 2016) was held in conjunction with HTCMC 9 to address key issues, challenges, and opportunities in a variety of advanced materials and technologies that are critically needed for sustainable societal development.
This Ceramic Transactions volume contains a collection of peer reviewed papers from the 16 below symposia that were submitted from these two conferences
* Design and Development of Advanced Ceramic Fibers, Interfaces, and Interphases in Composites- A Symposium in Honor of Professor Roger Naslain
* Innovative Design, Advanced Processing, and Manufacturing Technologies
* Materials for Extreme Environments: Ultrahigh Temperature Ceramics (UHTCs) and Nano-laminated Ternary Carbides and Nitrides (MAX Phases)
* Polymer Derived Ceramics and Composites
* Advanced Thermal and Environmental Barrier Coatings: Processing, Properties, and Applications
* Thermomechanical Behavior and Performance of Composites
* Ceramic Integration and Additive Manufacturing Technologies
* Component Testing and Evaluation of Composites
* CMC Applications in Transportation and Industrial Systems
* Powder Processing Innovation and Technologies for Advanced Materials and Sustainable Development
* Novel, Green, and Strategic Processing and Manufacturing Technologies
* Ceramics for Sustainable Infrastructure: Geopolymers and Sustainable Composites
* Advanced Materials, Technologies, and Devices for Electro-optical and Medical Applications
* Porous Ceramics for Advanced Applications Through Innovative Processing
* Multifunctional Coatings for Sustainable Energy and Environmental Applications
weitere Ausgaben werden ermittelt
Edited by
Mrityunjay Singh
Tatsuki Ohji
Shaoming Dong
Dietmar Koch
Kiyoshi Shimamura
Bernd Clauss
Bernhard Heidenreich
Jun Akedo
1 - Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development [Seite 3]
2 - Contents [Seite 7]
3 - Preface [Seite 13]
4 - Design and Development of Advanced Ceramic Fibers, Interfaces, and Interphases in Composites [Seite 15]
4.1 - PHYSICAL AND CHEMICAL PROPERTIES OF SILICON CARBIDE FIBERS [Seite 17]
4.1.1 - INTRODUCTION [Seite 17]
4.1.2 - EXPERIMENTAL [Seite 17]
4.1.3 - CONCLUSIONS [Seite 20]
4.1.4 - REFERENCES [Seite 20]
4.2 - HEAT-RESISTANT INORGANIC FIBERS [Seite 21]
4.2.1 - INTRODUCTION [Seite 21]
4.2.2 - HISTRICAL POINTS OF INORGANIC FIBERS [Seite 23]
4.2.3 - PROGRESS IN UBE's SiC-BASED FIBERS [Seite 25]
4.2.4 - THE FINE STRUCTURE OF TYRANNO SA [Seite 29]
4.2.5 - CONCLUSION [Seite 31]
4.2.6 - ACKNOWLEDGEMENT [Seite 32]
4.2.7 - REFERENCES [Seite 32]
4.3 - SYNTHESIS, PROPERTIES AND APPLICATIONS OF SIC ULTRATHIN FIBERS VIA ELECTROSPINNING COMBINED WITH THE POLYMER-DERIVED CERAMICS ROUTE [Seite 33]
4.3.1 - INSTRUCTION [Seite 33]
4.3.2 - EXPERIMENTAL [Seite 34]
4.3.2.1 - Synthesis of SiC ultrathin fibers [Seite 34]
4.3.2.2 - Fabrication of Hierarchical TiO2/SiC fibers [Seite 34]
4.3.2.3 - Fabrication of Hierarchical TiO2/SiC fibers [Seite 34]
4.3.2.4 - Characterization [Seite 35]
4.3.3 - RESULTS AND DISCUSSION [Seite 35]
4.3.4 - CONCLUSIONS [Seite 38]
4.3.5 - ACKNOWLEDGEMENTS [Seite 38]
4.3.6 - REFERENCES [Seite 38]
4.4 - NOVEL OXIDE FIBERS TO REINFORCE CERAMIC AND METAL MATRICES [Seite 41]
4.4.1 - INTRODUCTION [Seite 41]
4.4.2 - MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FIBERS [Seite 42]
4.4.2.1 - Mullite-ZrO2 [Seite 43]
4.4.2.2 - Yttrium-aluminum perovkite (YAP) [Seite 46]
4.4.2.3 - Al2O3-Me3Al5O12 fibers (Me = Y, Er, Tb) [Seite 48]
4.4.3 - POTENTIAL APPLICATIONS OF THE FIBERS [Seite 49]
4.4.3.1 - Molybdenum matrix composites [Seite 49]
4.4.3.2 - Oxide matrix composites [Seite 50]
4.4.4 - CONCLUSION [Seite 51]
4.4.5 - ACKNOWLEDGEMENTS [Seite 51]
4.4.6 - REFERENCES [Seite 51]
4.5 - A JOURNEY IN THE FIELD OF CERAMIC MATRIX COMPOSITES [Seite 53]
4.5.1 - INTRODUCTION AND BACKGROUND [Seite 53]
4.5.2 - FIRST KEY STEP: THE CVI-PROCESS [Seite 54]
4.5.2.1 - SiC I-CVI and related SiC-based matrix composites [Seite 54]
4.5.2.2 - First modeling of SiC-CVI [Seite 55]
4.5.2.3 - Ceramic fibers and fiber preforms [Seite 55]
4.5.2.4 - P-CVI related processing [Seite 57]
4.5.3 - SECOND KEY STEP: EXTENSION OF THE CVI-PROCESS TO OTHER CERAMICS [Seite 57]
4.5.4 - THIRD KEY STEP: THE INTERPHASE CONCEPT [Seite 58]
4.5.4.1 - The concept [Seite 58]
4.5.4.2 - Pyrocarbon and hexagonal BN interphases [Seite 59]
4.5.4.3 - [PyC(B)]n, (PyC-SiC)n and (hex.BN-SiC)n multilayered interphases [Seite 60]
4.5.4.4 - Attempts to identify other potential interphase materials [Seite 62]
4.5.5 - FOURTH KEY STEP: THE CONCEPT OF SELF-HEALING MATRIX [Seite 63]
4.5.5.1 - The concept of SH matrix [Seite 63]
4.5.5.2 - Composites with a multilayered Si-B-C self-healing matrix [Seite 63]
4.5.6 - CONCLUSION [Seite 64]
4.5.7 - ACKNOWLEDGEMENTS [Seite 65]
4.5.8 - REFERENCES [Seite 65]
4.6 - EFFECTS OF THE MICROSTRUCTURE, AND DEGRADATION REACTION UNDER HEAT-TREATMENT ON MECHANICAL PROPERTIES OF SiC-POLYCRYSTALLINE FIBER [Seite 69]
4.6.1 - INTRODUCTION [Seite 69]
4.6.2 - EXPERIMENTAL [Seite 70]
4.6.3 - MATERIALS [Seite 70]
4.6.4 - TENSILE TEST [Seite 70]
4.6.5 - FRACTGRAPHY [Seite 71]
4.6.6 - RESULTS AND DISCUSSION [Seite 71]
4.6.7 - TENSILE TEST AND WEIBULL ANALYSIS [Seite 71]
4.6.8 - CHARACTERIZATION OF THE FRACTURE SURFACE [Seite 72]
4.6.9 - CHARACTERIZATION OF THE FRACTURE ORIGIN [Seite 72]
4.6.10 - CALCULATION RESULTS AND HEAT-TREATMENT CONDITIONS [Seite 74]
4.6.11 - CONCLUSIONS [Seite 77]
4.6.12 - ACK OWLEDGEMENTS [Seite 78]
4.6.13 - REFERENCES [Seite 78]
5 - Innovative Design, Advanced Processing, and Manufacturing Technologies [Seite 79]
5.1 - FABRICATION AND MECHANICAL PROPERTIES OF ZrC-MODIFIED C/C-SiC COMPOSITES [Seite 81]
5.1.1 - INTRODUCTION [Seite 81]
5.1.2 - EXPERIMENTAL [Seite 82]
5.1.2.1 - Material prepared [Seite 82]
5.1.2.2 - Mechanical test [Seite 82]
5.1.3 - RESULTS AND DISCUSSION [Seite 83]
5.1.3.1 - Microstructure of preform [Seite 83]
5.1.3.2 - Microstructure of composites [Seite 84]
5.1.3.3 - Mechanical properties [Seite 84]
5.1.4 - CONCLUSION [Seite 86]
5.1.5 - ACKNOWLEDGMENTS [Seite 86]
5.1.6 - REFERENCES [Seite 86]
5.2 - MANUFACTURE OF SiC/ZrSi2 COMPOSITE MATERIALS: ASSESSING THERMAL COMPATIBILITY BETWEEN MATRIX AND REINFORCEMENT [Seite 89]
5.2.1 - INTRODUCTION [Seite 89]
5.2.2 - EXPERIMENTAL [Seite 90]
5.2.3 - CARBON/SILICON CARBIDE POROUS PREFORMS [Seite 90]
5.2.4 - Si-Zr ALLOYS [Seite 90]
5.2.5 - REACTIVE INFILTRATION [Seite 90]
5.2.6 - MICROSTRUCTURAL CHARACTERIZATION [Seite 91]
5.2.7 - COEFFICIENT OF THERMAL EXPANSION (CTE) [Seite 91]
5.2.8 - RESULTS AND DISCUSSION [Seite 91]
5.2.9 - ESTIMATION OF THE ALLOY REACTIVITY LIMIT [Seite 91]
5.2.10 - ALLOY CHARACTERIZATION [Seite 92]
5.2.11 - PREFORM CHARACTERIZATION [Seite 93]
5.2.12 - THERMAL COMPATIBILITY BETWEEN MATRIX AND REINFORCEMENT [Seite 93]
5.2.13 - SiC/Si-ZrSi2 COMPOSITE MATERIALS [Seite 94]
5.2.14 - CONCLUSIONS [Seite 97]
5.2.15 - ACKNOWLEDGEMENTS [Seite 97]
5.2.16 - REFERENCES [Seite 97]
5.3 - INFLUENCE OF THE ANNEALING PROCESS PARAMETERS IN THE PRODUCTION OF NEW SHORT-FIBRE-REINFORCED C/C-SIC COMPOSITES [Seite 99]
5.3.1 - INTRODUCTION [Seite 99]
5.3.2 - EXPERIMENTAL [Seite 100]
5.3.2.1 - Selecting the Starting Materials [Seite 100]
5.3.2.2 - Moulding of the CFRP Composites [Seite 100]
5.3.2.3 - Annealing of the CFRP Composites [Seite 101]
5.3.2.4 - Production of the C/C Composites [Seite 101]
5.3.2.5 - Production of the C/C-SiC Composites [Seite 101]
5.3.2.6 - Characterisation [Seite 101]
5.3.3 - RESULTS AND DISCUSSION OF THE CFRP COMPOSITES [Seite 102]
5.3.3.1 - Degree of Cure [Seite 102]
5.3.3.2 - Porosity and Density [Seite 103]
5.3.3.3 - Microstructure [Seite 104]
5.3.4 - RESULTS AND DISCUSSION OF THE C/C COMPOSITES [Seite 104]
5.3.4.1 - Porosity and Density [Seite 104]
5.3.4.2 - Residual Carbon Content [Seite 105]
5.3.4.3 - Hardness of the Carbon Matrix [Seite 105]
5.3.4.4 - Microstructure [Seite 106]
5.3.4.5 - Structural Properties of the Matrix Carbon [Seite 106]
5.3.5 - RESULTS AND DISCUSSION OF THE C/C-SIC COMPOSITES [Seite 107]
5.3.5.1 - Porosity and Density [Seite 108]
5.3.5.2 - Microstructure [Seite 108]
5.3.5.3 - Mechanical Properties [Seite 108]
5.3.6 - CONCLUSIONS [Seite 109]
5.3.6.1 - CFRP Composites [Seite 109]
5.3.6.2 - C/C Composites [Seite 109]
5.3.6.3 - C/C-SiC Composites [Seite 109]
5.3.7 - REFERENCES [Seite 110]
5.4 - FIBER-MATRIX ADHESION IN CFRC GREENBODIES AND ITS INFLUENCE ON MICROCRACK FORMATION DURING THE CARBONIZATION PROCESS [Seite 111]
5.4.1 - INTRODUCTION [Seite 111]
5.4.2 - SAMPLE PREPARATION [Seite 111]
5.4.2.1 - Carbon fibers [Seite 111]
5.4.2.2 - Minicomposites [Seite 112]
5.4.2.3 - Preparation of push-out samples [Seite 112]
5.4.3 - EXPERIMENTAL METHODS [Seite 112]
5.4.3.1 - Evaluation of fiber-matrix adhesion with single fiber push-out experiments [Seite 112]
5.4.4 - RESULTS [Seite 114]
5.4.4.1 - Fiber-matrix adhesion in greenbody samples [Seite 114]
5.4.4.2 - Signal classification [Seite 117]
5.4.4.3 - Ex-situ investigation of the crack pattern of carbonized samples [Seite 117]
5.4.5 - SUMMARY AND CONCLUSION [Seite 119]
5.4.6 - REFERENCES [Seite 119]
5.5 - EFFECTS OF SOURCE GAS FLOW PATHS ON THE MATRIX INFILTRATION BEHAVIORS AND MECHANICAL PROPERTIES OF CVI-PROCESSED SiCf/SiC Composite Tubes [Seite 123]
5.5.1 - INTRODUCTION [Seite 123]
5.5.2 - EXPERIMENTAL [Seite 124]
5.5.3 - RESULTS AND DISCUSSION [Seite 125]
5.5.4 - CONCLUSIONS [Seite 128]
5.5.5 - ACKNOWLEDGEMENTS [Seite 129]
5.5.6 - REFERENCES [Seite 129]
5.6 - FABRICATION OF CO-TOUGHENED C-SiC BASED COMPOSITE BY CARBON FIBERS AND SiC NANOFIBERS [Seite 131]
5.6.1 - INTRODUCTION [Seite 131]
5.6.2 - EXPERIMENTAL PROCEDURES [Seite 132]
5.6.2.1 - Materials fabrication [Seite 132]
5.6.2.2 - Characterization [Seite 133]
5.6.3 - RESULTS AND DISCUSSION [Seite 133]
5.6.4 - SUMMARY [Seite 137]
5.6.5 - ACKNOWLEDGMENTS [Seite 137]
5.6.6 - REFERENCES [Seite 137]
5.7 - INFLUENCING THE MECHANICAL PROPERTIES OF WEAK MATRIX C/C COMPOSITES BY MEANS OF MICROSTRUCTURAL DESIGN [Seite 139]
5.7.1 - INTRODUCTION [Seite 139]
5.7.2 - EXPERIMENTAL [Seite 140]
5.7.2.1 - Production of the CFRP Composites [Seite 140]
5.7.2.2 - Tempering of the CFRP Composites [Seite 140]
5.7.2.3 - Production of the C/C Composites [Seite 140]
5.7.2.4 - Analysis of the Microstructure [Seite 140]
5.7.2.5 - Examination of the Mechanical Properties of the CFRP and C/C Composites [Seite 140]
5.7.3 - RESULTS [Seite 141]
5.7.3.1 - Microstructure of the modified CFRP Composites [Seite 141]
5.7.3.2 - Microstructures of C/C Composites [Seite 142]
5.7.3.3 - Mechanical Properties of the modified CFRP and C/C Composites [Seite 144]
5.7.4 - DISCUSSION [Seite 148]
5.7.5 - CONCLUSION [Seite 148]
5.7.6 - ACKNOWLEDGEMENT [Seite 149]
5.7.7 - REFERENCES [Seite 149]
5.8 - SPARK PLASMA SINTERING OF SILICON CARBIDE POWDERS WITH CARBON AND BORON AS ADDITIVES [Seite 151]
5.8.1 - INTRODUCTION [Seite 151]
5.8.2 - EXPERIMENTAL [Seite 151]
5.8.3 - RESULTS AND DISCUSSION [Seite 152]
5.8.4 - CONCLUSIONS [Seite 156]
5.8.5 - REFERENCES [Seite 156]
5.9 - COMPARISON OF MACHINING TECHNOLOGIES FOR CMC MATERIALS USING ADVANCED 3D SURFACE ANALYSIS [Seite 159]
5.9.1 - INTRODUCTION [Seite 159]
5.9.2 - EXPERIMENTAL [Seite 160]
5.9.2.1 - Investigated Composite [Seite 160]
5.9.2.2 - Preparation of the Specimens [Seite 160]
5.9.2.3 - Surface Measurement [Seite 161]
5.9.3 - RESULTS AND DISCUSSION [Seite 161]
5.9.3.1 - Microstructural Investigation by SEM [Seite 161]
5.9.3.2 - 3D Surface Topography [Seite 162]
5.9.3.3 - 2D & 3D Roughness Definition [Seite 163]
5.9.3.4 - Effect of the feed speed on Sq [Seite 166]
5.9.3.5 - Void Volume for material break out evaluation [Seite 167]
5.9.3.6 - Effect of the feed speed on Vvv (valley void Volume) [Seite 168]
5.9.4 - CONCLUSIONS [Seite 169]
5.9.5 - REFERENCES [Seite 170]
5.10 - INFILTRATION OF MOLTEN SILICON IN A POROUS BODY OF B4C UNDER MICROWAVE HEATING [Seite 171]
5.10.1 - INTRODUCTION [Seite 171]
5.10.2 - EXPERIMENTAL PROCEDURE [Seite 172]
5.10.2.1 - Sample Fabrication [Seite 172]
5.10.2.2 - Microstructural Investigation [Seite 174]
5.10.2.3 - Mechanical Property [Seite 174]
5.10.3 - RESULT AND DISCUSSION [Seite 174]
5.10.3.1 - Microstructure of the infiltrated composites [Seite 174]
5.10.4 - CONCLUSION [Seite 178]
5.10.5 - ACKNOWLEDGEMENTS [Seite 178]
5.10.6 - REFERENCES [Seite 178]
5.11 - REFRACTORY ADHES VES FOR BONDING OF POLYMER DERIVED CERAMICS [Seite 181]
5.11.1 - INTRODUCTION [Seite 181]
5.11.2 - EXPERIMENTAL [Seite 182]
5.11.3 - RESULTS AND DISCUSSION [Seite 183]
5.11.4 - CONCLUSIONS [Seite 185]
5.11.5 - ACKNOWLEDGEMENTS [Seite 185]
6 - Advanced Thermal and Environmental Barrier Coatings [Seite 187]
6.1 - SELF-HEALING EBC MATERIAL FOR GAS TURBINE APPLICATIONS [Seite 189]
6.1.1 - INTRODUCTION [Seite 189]
6.1.2 - EXPERIMENTAL [Seite 190]
6.1.2.1 - Materials and processing [Seite 190]
6.1.2.2 - Environmental testing and mechanical behavior [Seite 190]
6.1.3 - RESULTS AND DISCUSSION [Seite 190]
6.1.3.1 - Furnace oxidation tests [Seite 190]
6.1.3.2 - Burner rig tests [Seite 194]
6.1.3.3 - Bending tests [Seite 196]
6.1.4 - CONCLUSION [Seite 197]
6.1.5 - REFERENCES [Seite 198]
6.2 - MASS TRANSFER MECHANISM IN Yb2Si2O7 UNDER OXYGEN POTENTIAL GRADIENTS AT HIGH TEMPERATURES [Seite 201]
6.2.1 - INTRODUCTION [Seite 201]
6.2.2 - EXPERIMENTAL [Seite 202]
6.2.2.1 - Materials [Seite 202]
6.2.2.2 - Oxygen permeability constants [Seite 202]
6.2.3 - RESULTS AND DISCUSSION [Seite 203]
6.2.4 - CONCLUSIONS [Seite 208]
6.2.5 - ACKNOWLEDGEMENTS [Seite 208]
6.2.6 - REFERENCES [Seite 208]
6.3 - MAGNETRON SPUTTERED Y2SiO5 ENVIRONMENTAL BARRIER COATINGS FOR SIC/SIC CMCS [Seite 211]
6.3.1 - INTRODUCTION [Seite 211]
6.3.2 - EXPERIMENTAL [Seite 212]
6.3.3 - RESULTS AND DISCUSSION [Seite 213]
6.3.3.1 - Isothermal Oxidation [Seite 214]
6.3.3.2 - Cyclic Oxidation [Seite 216]
6.3.3.3 - Water Vapour Induced Corrosion [Seite 219]
6.3.4 - CONCLUSION [Seite 221]
6.3.5 - ACKNOWLEDGEMENTS [Seite 221]
6.3.6 - REFERENCES [Seite 221]
7 - Thermomechanical Behavior and Performance of Composites [Seite 225]
7.1 - THERMAL ABLATION PERFORMANCE OF CF-HFB2 COMPOSITES WITH AND WITHOUT A C MATRIX DEPOSITED BY CVI [Seite 227]
7.1.1 - INTRODUCTION [Seite 227]
7.1.2 - EXPERIMENTAL [Seite 228]
7.1.3 - RESULTS AND DISCUSSIONS [Seite 230]
7.1.4 - CONCLUSIONS [Seite 234]
7.1.5 - ACKNOWLEDGMENTS [Seite 234]
7.1.6 - REFERENCES [Seite 234]
7.2 - EXPERIMENTAL RESEARCH ON AIR PERMEABILITY OF FIBER REINFORCED AEROGEL [Seite 237]
7.2.1 - INTRODUCTION [Seite 237]
7.2.2 - EXPERIMENTAL PROCEDURES [Seite 237]
7.2.3 - ANALYSIS [Seite 240]
7.2.4 - PRESSURE PREDICTION [Seite 240]
7.2.5 - CONCLUSION [Seite 243]
7.2.6 - REFERENCES [Seite 243]
7.3 - FATIGUE BEHAVIOR OF AN ADVANCED SiC/SiC CERAMIC COMPOSITE AT 1300°C IN AIR AND IN STEAM [Seite 245]
7.3.1 - INTRODUCTION [Seite 245]
7.3.2 - MATERIAL AND EXPERIMENTAL ARRANGEMENTS [Seite 246]
7.3.3 - RESULTS AND DISCUSSION [Seite 247]
7.3.3.1 - Monotonic Tension [Seite 247]
7.3.3.2 - Tension-Tension Fatigue [Seite 248]
7.3.3.3 - Composite Microstructure [Seite 251]
7.3.4 - CONCLUDING REMARKS [Seite 254]
7.3.5 - ACKNOWLEDGEMENTS [Seite 255]
7.3.6 - REFERENCES [Seite 255]
7.4 - STRENGTH RECOVERY AND CRACK-FILLING BEHAVIOR OF ALUMINA/ TiC SELF-HEALING CERAMICS [Seite 257]
7.4.1 - INTRODUCTION [Seite 257]
7.4.2 - THEORETICAL CALCULATION [Seite 259]
7.4.3 - EXPERIMENTAL [Seite 260]
7.4.3.1 - Sample preparation [Seite 260]
7.4.3.2 - Strength recovery tests [Seite 260]
7.4.3.3 - Structure characterisation [Seite 261]
7.4.4 - RESULTS AND DISCUSSION [Seite 261]
7.4.4.1 - Strength recovery [Seite 261]
7.4.4.2 - Surface analysis [Seite 261]
7.4.5 - CONCLUSIONS [Seite 264]
7.4.6 - ACKNOWLEDGEMENTS [Seite 264]
7.4.7 - REFERENCES [Seite 265]
7.5 - HOT GAS STABILITY OF VARIOUS CERAMIC MATRIX COMPOSITES [Seite 267]
7.5.1 - INTRODUCTION [Seite 267]
7.5.2 - EXPERIMENTAL [Seite 268]
7.5.2.1 - Materials [Seite 268]
7.5.3 - RESULTS AND DISCUSSION [Seite 268]
7.5.3.1 - Hot gas tests [Seite 268]
7.5.3.2 - Mechanical behavior [Seite 270]
7.5.4 - CONCLUSIONS [Seite 273]
7.5.5 - REFERENCES [Seite 274]
7.6 - DAMAGE ANALYSIS IN 3D WOVEN SiC/SiC CERAMIC MATRIX COMPOSITE [Seite 275]
7.6.1 - INTRODUCTION [Seite 275]
7.6.2 - EXPERIMENTAL TECHNIQUES AND TESTING PROCEDURE [Seite 276]
7.6.3 - RESULTS [Seite 277]
7.6.3.1 - Macroscopic Behavior [Seite 277]
7.6.3.2 - Localization of Damage [Seite 280]
7.6.3.3 - Shear, Transverse and Out-of-plane Strains [Seite 281]
7.6.4 - DISCUSSION [Seite 283]
7.6.5 - CONCLUSIONS [Seite 283]
7.6.6 - REFERENCES [Seite 283]
7.7 - THE WEDGE-LOADED DOUBLE CANTILEVER BEAM TEST: A FRICTION BASED METHOD FOR MEASURING INTERLAMINAR FRACUTRE PROPERTIES IN CERAMIC MATRIX COMPOSITES [Seite 287]
7.7.1 - INTRODUCTION [Seite 287]
7.7.2 - EXPERIMENTAL PROCEDURE [Seite 288]
7.7.2.1 - Material, Mechanical Testing, and Nondestructive Evaluation [Seite 288]
7.7.2.2 - Friction Measurement [Seite 289]
7.7.3 - ANALYTICAL ANALYSIS [Seite 289]
7.7.4 - RESULTS AND DISCUSSION [Seite 291]
7.7.4.1 - Friction Study [Seite 291]
7.7.4.2 - Mechanical Data [Seite 293]
7.7.4.3 - Mode I Energy Release Rate [Seite 294]
7.7.5 - CONCLUSION [Seite 295]
7.7.6 - ACKNOWLEDGEMENTS [Seite 295]
7.7.7 - REFERENCES [Seite 295]
7.8 - DAMAGE MONITORING OF MI CMCS WITH STRESS CONCENTRATIONS UTILIZING ACOUSTIC EMISSION AND ELECTRICAL RESISTANCE [Seite 297]
7.8.1 - INTRODUCTION [Seite 297]
7.8.2 - EXPERIMENTAL [Seite 298]
7.8.3 - RESULTS AND DISCUSSION [Seite 299]
7.8.3.1 - Monotonic Test [Seite 299]
7.8.3.2 - Fatigue Test [Seite 300]
7.8.3.3 - Unload-Reload Test with Camera and Two ER Measurements [Seite 305]
7.8.4 - CONCLUSIONS [Seite 309]
7.8.5 - REFERENCES [Seite 309]
7.9 - DAMAGE EVOLUTION AND FRACTURE IN SICF/SIC CERAMIC MATRIX COMPOSITE SPECIMENS [Seite 311]
7.9.1 - INTRODUCTION [Seite 311]
7.9.2 - EXPERIMENTAL METHODS [Seite 312]
7.9.2.1 - Materials and Specimen Geometry [Seite 312]
7.9.2.2 - Mechanical Testing [Seite 313]
7.9.3 - RESULTS [Seite 313]
7.9.3.1 - Constitutive Behaviour [Seite 313]
7.9.3.2 - Damage Progression [Seite 315]
7.9.3.3 - Effects of Pre-exposure [Seite 318]
7.9.4 - DISCUSSION [Seite 320]
7.9.5 - CONCLUSIONS [Seite 323]
7.9.6 - ACKNOWLEDGEMENTS [Seite 323]
7.9.7 - REFERENCES [Seite 324]
7.10 - DAMAGE CHARACTERIZATION OF HIGH VELOCITY IMPACT IN CURVED SIC/SIC COMPOSITES [Seite 325]
7.10.1 - INTRODUCTION [Seite 325]
7.10.2 - EXPERIMENTAL PROCEDURE [Seite 326]
7.10.2.1 - Material and Test Specimens [Seite 326]
7.10.2.2 - Impact Testing [Seite 327]
7.10.2.3 - Non-Destructive Evaluation [Seite 329]
7.10.3 - RESULTS AND DISCUSSION [Seite 330]
7.10.3.1 - Pre-Impact Parameters [Seite 330]
7.10.3.2 - Post-Impact Results [Seite 330]
7.10.3.3 - Micro-CT and Optical Microscopy [Seite 332]
7.10.4 - CONCLUSION [Seite 335]
7.10.5 - ACKNOWLEDGEMENTS [Seite 335]
7.10.6 - REFERENCES [Seite 336]
7.11 - EFFECT OF VACUUM ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SILICON CARBIDE PRODUCED BY REACTIVE INFILTRATION [Seite 337]
7.11.1 - STUDENT POSTER AWARD [Seite 337]
7.11.2 - INTRODUCTION [Seite 337]
7.11.3 - EXPERIMENTAL [Seite 338]
7.11.4 - MATERIALS [Seite 338]
7.11.5 - REACTIVE INFILTRATION [Seite 338]
7.11.6 - MECHANICAL CHARACTERIZATION [Seite 339]
7.11.7 - RESULTS AND DISCUSSION [Seite 339]
7.11.8 - CONCLUSIONS [Seite 343]
7.11.9 - ACKNOWLEDGEMENTS [Seite 343]
7.11.10 - REFERENCES [Seite 343]
7.12 - HIGH-TEMPERATURE MECHANICAL PROPERTIES OF SILICA AEROGEL COMPOSITES REINFORCED BY MULLITE FIBERS [Seite 347]
7.12.1 - INTRODUCTION [Seite 347]
7.12.2 - EXPERIMENTAL [Seite 348]
7.12.3 - RESULTS AND DISCUSSION [Seite 348]
7.12.3.1 - B. Effect of high temperature on the compressive stress of SiO2 aerogel composite [Seite 350]
7.12.4 - CONCLUSIONS [Seite 351]
7.12.5 - ACKNOWLEDGEMENTS [Seite 352]
7.12.6 - REFERENCES [Seite 352]
7.13 - OXIDATION RESISTANCE MECHANISM OF TiAlSiCN AND TiCrSiCN COMPOSITIONS MADE BY PLASMA SPARK SINTERING AT 1200°C [Seite 355]
7.13.1 - INTRODUCTION [Seite 355]
7.13.2 - EXPERIMENTAL [Seite 356]
7.13.3 - RESULTS AND DISCUSSION [Seite 357]
7.13.4 - TiAlSiCN COMPOSITION [Seite 357]
7.13.5 - TiCrSiCN COMPOSITION [Seite 360]
7.13.6 - CONCLUSION [Seite 364]
7.13.7 - REFERENCES [Seite 364]
7.14 - EFFECTS OF BINDERS (Ni-Co) AND TERNARY CARBIDE (TaC) ON FRICTION AND WEAR BEHAVIOR OF Ti(CN) BASED CERMETS [Seite 367]
7.14.1 - INTRODUCTION [Seite 367]
7.14.2 - EXPERIMENTAL [Seite 368]
7.14.2.1 - Material Preparation [Seite 368]
7.14.2.2 - Material Characterization [Seite 369]
7.14.3 - RESULTS AND DISCUSSION [Seite 369]
7.14.3.1 - SEM (EDS) analysis of processed Ti(CN) based cermets [Seite 369]
7.14.3.2 - Physical and Mechanical properties of processed Ti(CN) based cermets [Seite 371]
7.14.3.3 - Friction and wear [Seite 373]
7.14.3.4 - SEM (EDS) observations of worn surfaces of investigated cermet and WC-Co ball [Seite 375]
7.14.4 - CONCLUSION [Seite 377]
7.14.5 - REFERENCES [Seite 377]
8 - Component Testing and Applications of Composites [Seite 379]
8.1 - APPLICATION OF CMC MATERIALS IN ROCKET PROPULSION [Seite 381]
8.1.1 - INTRODUCTION [Seite 381]
8.1.2 - PROCESS OVERVIEW [Seite 383]
8.1.3 - COMPONENT PRODUCTION [Seite 384]
8.1.4 - TESTING [Seite 387]
8.1.5 - PRODUCTION AND APPLICATION [Seite 387]
8.1.6 - FUTURE DEVELOPMENT [Seite 387]
8.1.7 - REFERENCES [Seite 388]
8.2 - DEVELOPMENT OF CARBON FIBER REINFORCED CMC FOR AUTOMOTIVE APPLICATIONS [Seite 389]
8.2.1 - INTRODUCTION [Seite 389]
8.2.2 - MANUFACTURING PROCESSES [Seite 390]
8.2.3 - PROPERTIES [Seite 392]
8.2.4 - CMC COMPOSITES FOR AUTOMOTIVE BRAKE DISCS [Seite 395]
8.2.5 - CONCLUSIONS [Seite 400]
8.2.6 - REFERENCES [Seite 401]
8.3 - OCTRA - OPTIMIZED CERAMIC FOR HYPERSONIC APPLICATION WITH TRANSPIRATION COOLING [Seite 403]
8.3.1 - INTRODUCTION [Seite 403]
8.3.2 - STATE OF THE ART CMC MATERIALS [Seite 404]
8.3.3 - MANUFACTURING OF OCTRA [Seite 404]
8.3.4 - MATERIAL CHARACTERIZATION [Seite 405]
8.3.4.1 - Microstructure [Seite 405]
8.3.4.2 - Permeability and Porosity [Seite 406]
8.3.4.3 - Thermal Properties [Seite 408]
8.3.4.4 - Mechanical Properties [Seite 408]
8.3.5 - CHANNEL VARIATION [Seite 410]
8.3.6 - APPLICATIONS [Seite 411]
8.3.7 - CONCLUSION [Seite 412]
8.3.8 - ACKNOWLEDGEMENT [Seite 412]
8.3.9 - REFERENCES [Seite 412]
8.4 - OXIDE-OXIDE CERAMIC MATRIX COMPOSITES - ENABLING WIDESPREAD INDUSTRY ADOPTION [Seite 415]
8.4.1 - INTRODUCTION [Seite 415]
8.4.2 - EXPERIMENTAL [Seite 418]
8.4.3 - RESULTS AND DISCUSSION [Seite 419]
8.4.4 - CONCLUSION [Seite 426]
8.4.5 - ACKNOWLEDGEMENTS [Seite 426]
8.4.6 - REFERENCES [Seite 426]
8.5 - UPDATING COMPOSITE MATERIALS HANDBOOK-17 VOLUME 5-CERAMIC MATRIX COMPOSITES [Seite 427]
8.5.1 - INTRODUCTION [Seite 427]
8.5.2 - COMPOSITE MATERIALS HANDBOOK-17 (CMH-17) [Seite 429]
8.5.2.1 - CMH-17 Mission [Seite 429]
8.5.2.2 - CMH-17 Vision [Seite 429]
8.5.2.3 - Approach/Organization [Seite 430]
8.5.3 - CERTIFYING COMPOSITE MATERIALS [Seite 432]
8.5.4 - UPDATING CMH-17 VOLUME 5 CONTENT [Seite 432]
8.5.4.1 - Materials and Processes (M&P) Working Group [Seite 433]
8.5.4.2 - Testing Working Group [Seite 434]
8.5.4.3 - Design and Analysis Working Group [Seite 435]
8.5.4.4 - Data Review Working Group [Seite 435]
8.5.5 - ACKNOWLEDGEMENT OF CMH-17 VOLUME 5 CONTRIBUTORS [Seite 436]
8.5.6 - SUMMARY [Seite 436]
8.5.7 - REFERENCES [Seite 436]
9 - Multifunctional Coatings for Sustainable Energy and Environmental Applications [Seite 439]
9.1 - DEVELOPMENT OF SUPERFINE NANO-COMPOSITES ANTIFOULING COATINGS FOR SHIP HULLS [Seite 441]
9.1.1 - INTRODUCTION [Seite 441]
9.1.2 - EXPERIMENTAL WORK [Seite 442]
9.1.2.1 - Materials Used [Seite 442]
9.1.2.2 - Foul Release Coating [Seite 442]
9.1.2.3 - Substrate [Seite 443]
9.1.2.4 - Optimisation of Additive Concentrations [Seite 443]
9.1.2.5 - Effect of fluorosilanes of different chain lengths [Seite 445]
9.1.2.6 - Effect of fluorosurfactants [Seite 445]
9.1.2.7 - Varying wt% of silica nano particles [Seite 445]
9.1.2.8 - Elemental Analysis [Seite 446]
9.1.2.9 - Atomic Force Microscopy (AFM) [Seite 447]
9.1.3 - SEM [Seite 447]
9.1.3.1 - Mechanical properties of various modified coatings [Seite 448]
9.1.4 - FOUL RELEASE TESTING [Seite 449]
9.1.4.1 - Results of immersion tests [Seite 449]
9.1.4.2 - 30 Day Immersion test [Seite 449]
9.1.4.3 - 60 Day Immersion test [Seite 450]
9.1.4.4 - Foul Release Effect [Seite 452]
9.1.4.5 - Measurement of Fouling Adhesion Strength in Shear [Seite 453]
9.1.5 - CONCLUSION [Seite 453]
9.1.6 - REFERENCES [Seite 454]
9.2 - EFFECT OF HEAT EXPOSURE ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 3Al2O3 2SiO2/Si/SiC COATING SYSTEM [Seite 457]
9.2.1 - 1. INTRODUCTION [Seite 457]
9.2.2 - 2. EXPERIMENTAL PROCEDURE [Seite 458]
9.2.2.1 - 2.1 FABRICATION PROCEDURE AND SAMPLE PREPARATION [Seite 458]
9.2.2.2 - 2.2 MICROSTRUCTURAL CHARACTERIZATION [Seite 458]
9.2.2.3 - 2.3 EVALUATION OF MECHANICAL PROPERTIES [Seite 458]
9.2.3 - 3. RESULTS and DISCUSSION [Seite 459]
9.2.3.1 - 3.1 MICROSTRUCTUAL CHANGE [Seite 459]
9.2.3.2 - 3.2 CHANGE OF YOUNG'S MODULUS AND HARDNESS [Seite 461]
9.2.4 - 4. CONCLUSION [Seite 464]
9.3 - SUSPENSION PLASMA SPRAY OF YTTRIA STABILIZED ZIRCONIA COATINGS [Seite 465]
9.3.1 - INTRODUCTION [Seite 465]
9.3.2 - EXPERIMENTAL [Seite 466]
9.3.2.1 - Experiment Setup [Seite 466]
9.3.2.2 - Materials [Seite 467]
9.3.2.3 - Process Parameters [Seite 468]
9.3.2.4 - Coating Characterization [Seite 469]
9.3.3 - RESULTS AND DISCUSSION [Seite 469]
9.3.3.1 - Effect of Solvent [Seite 469]
9.3.3.2 - Effect of Plasma Gas Compositions [Seite 471]
9.3.3.3 - Deposition of Dense Coatings [Seite 473]
9.3.3.4 - Coating Deposition by CACT Torch [Seite 474]
9.3.3.5 - Effect of Standoff Distance [Seite 475]
9.3.4 - CONCLUSIONS [Seite 476]
9.3.5 - ACKNOWLEDGEMENTS [Seite 476]
9.3.6 - REFERENCES [Seite 477]
9.4 - THICK ALUMINUM NITRIDE COATINGS BY REACTIVE DC PLASMA [Seite 479]
9.4.1 - INTRODUCTION [Seite 479]
9.4.2 - EXPERIMENTAL PROCEDURE [Seite 480]
9.4.3 - RESULTS AND DISCUSSION [Seite 483]
9.4.3.1 - Fabricated Coatings and effect of particle velocity [Seite 483]
9.4.3.2 - Addition of Sintering Additives [Seite 487]
9.4.3.3 - Increasing the Thermal Conductivity of the Coating [Seite 489]
9.4.4 - CONCLUSIONS [Seite 491]
9.4.5 - REFERENCES [Seite 491]
9.5 - USING AN AXIAL FEEDING DC-PLASMA SPRAY GUN FOR FABRICATION OF CERAMIC COATINGS [Seite 493]
9.5.1 - INTRODUCTION [Seite 494]
9.5.2 - EXPERIMENTAL [Seite 496]
9.5.3 - RESULTS AND DISCUSSION [Seite 499]
9.5.3.1 - Fabrication of ceramic coatings by the newly developed system [Seite 499]
9.5.3.2 - Controlling the Microstructure of the Coatings in the new System [Seite 501]
9.5.4 - CONCLUSIONS [Seite 503]
9.5.5 - REFERENCES [Seite 503]
10 - Ceramics for Sustainable Infrastructure [Seite 505]
10.1 - CHARACTERIZATION OF TWO CALCIUM ALUMINATE CEMENT PASTES [Seite 507]
10.1.1 - INTRODUCTION [Seite 507]
10.1.2 - EXPERIMENTAL PHASE [Seite 508]
10.1.3 - RESULTS AND DISCUSSION [Seite 508]
10.1.4 - CONCLUSIONS [Seite 516]
10.1.5 - ACKNOWLEDGEMENTS [Seite 516]
10.1.6 - REFERENCES [Seite 516]
10.2 - ADDITIVE MANUFACTURING OF KAOLINITE CLAY FROM COLOMBIA [Seite 519]
10.2.1 - INTRODUCTION [Seite 519]
10.2.2 - EXPERIMENTAL [Seite 520]
10.2.3 - RESULTS [Seite 521]
10.2.4 - ANALYSIS [Seite 527]
10.2.5 - CONCLUSIONS [Seite 528]
10.2.6 - REFERENCES [Seite 529]
11 - Advanced Materials, Technologies, and Devices for Electro-Optical and Medical Applications [Seite 531]
11.1 - ELASTIC CONSTANTS EVALUATED BY SOUND VELOCITIES IN RELAXOR SINGLE-CRYSTAL PLATES APPLYING TO ULTRASONIC PROBE FOR MEDICAL USES [Seite 533]
11.1.1 - INTRODUCTION [Seite 533]
11.1.2 - EXPERIMENTAL [Seite 535]
11.1.3 - RESULTS AND DISCUSSION [Seite 537]
11.1.3.1 - Piezoelectric and Elastic Constants in Relaxor Single-Crystal Plates [Seite 537]
11.1.3.2 - Effect of Domain Boundary on Elastic Constant in Single Crystals [Seite 540]
11.1.3.3 - Effect of DC poling and Grain Boundary on Elastic Constants in Single-Crystal Plates and Ceramics [Seite 542]
11.1.4 - CONCLUSIONS [Seite 546]
11.1.5 - ACKNOWLEDGMENTS [Seite 547]
11.1.6 - REFERENCES [Seite 547]
11.2 - HIGH PIEZOELECTRICITY IN CERAMICS EVALUATED BY ELASTIC CONSTANTS [Seite 549]
11.2.1 - INTRODUCTION [Seite 549]
11.2.2 - EXPERIMENTAL [Seite 549]
11.2.3 - RESULTS AND DISCUSSION [Seite 551]
11.2.3.1 - Dependence of Planar Coupling Factor on Elastic Constants [Seite 551]
11.2.3.2 - Relationship between Ratio of Transverse Wave Velocity to Longitudinal Wave Velocity, Poisson's Ratio and Bulk Modulus [Seite 553]
11.2.3.3 - Research and Development on Lead-Free Piezoelectric Ceramics [Seite 554]
11.2.3.4 - Dependence of High Ferroelectricity on Compositions in Alkali Niobate and PZT Ceramics [Seite 557]
11.2.4 - CONCLUSIONS [Seite 559]
11.2.5 - ACKNOWLEDGEMENTS [Seite 559]
11.2.6 - REFERENCES [Seite 559]
11.3 - A THERMO-ELECTRO-MECHANICAL VIBRATION ANALYSIS OF SIZE-DEPENDENT FUNCTIONALLY GRADED PIEZOELECTRIC NANOBEAMS [Seite 561]
11.3.1 - INTRODUCTION [Seite 561]
11.3.2 - THEORETICAL FORMULATIONS [Seite 563]
11.3.2.1 - The Material Properties of FGP Nanobeams [Seite 563]
11.3.2.2 - Nonlocal FG Piezoelectric Nanobeam Model [Seite 564]
11.3.3 - SOLUTION PROCEDURE [Seite 567]
11.3.4 - RESULTS AND DISCUSSION [Seite 567]
11.3.5 - CONCLUSIONS [Seite 571]
11.3.6 - REFERENCES [Seite 572]
11.4 - DEVELOPMENT OF LIQUID CRYSTAL DISPLAY WITH RGB LASER BACKLIGHT [Seite 573]
11.4.1 - 1. INTRODUCTION [Seite 573]
11.4.2 - 2. WIDENING OF COLOR GAMUT [Seite 574]
11.4.3 - 3. DEVELOPMENT OF LCD WITH RGB LASER BACKLIGHT [Seite 575]
11.4.3.1 - 3.1 RGB LASER BACKLIGHT [Seite 575]
11.4.3.2 - 3.2 LASER LIGHT SOURCES [Seite 577]
11.4.3.3 - 3.3 COLOR FILTERS ON LIQUID CRYSTAL PANEL [Seite 577]
11.4.4 - 4. OPTICAL CHARACTERISTICS OF DEVELOPED LCD [Seite 578]
11.4.5 - 5. CONCLUSIONS [Seite 579]
11.4.6 - REFERENCES [Seite 579]
11.5 - DEVELOPMENT OF HIGH THERMAL CONDUCTIVITY SILICON NITRIDE SUBSTRATES [Seite 581]
11.5.1 - 1. INTRODUCTION [Seite 581]
11.5.2 - 2. THERMAL CONDUCTIVITY OF SILICON NITRIDE [Seite 582]
11.5.2.1 - 2.1 External factors [Seite 582]
11.5.2.2 - 2.2 Sintered reaction-bonded silicon nitride (SRBSN) [Seite 583]
11.5.3 - 3. EFFECT OF METALLIC IMPURITIES ON THERMAL CONDUCTIVITY OF SRBSN [Seite 583]
11.5.3.1 - 3.1 Influence of Al impurity [Seite 583]
11.5.3.2 - 3.2 Influence of Fe impurity [Seite 584]
11.5.4 - 4. DEVELOPMENT OF THE SRBSN PROCESS [Seite 585]
11.5.4.1 - 4.1 Control of oxygen content [Seite 586]
11.5.4.2 - 4.2 Green sheet process [Seite 586]
11.5.4.3 - 4.3 Nitride body and Sintered body [Seite 587]
11.5.5 - 5. SUMMARY [Seite 588]
11.5.6 - 6. REFERENCES [Seite 588]
12 - EULA [Seite 589]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

200,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen