Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 23. Januar 2016
  • |
  • 616 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100083-0 (ISBN)
 

Composite materials, with their higher exposure to dynamic loads, have increasingly been used in aerospace, naval, automotive, sports and other sectors over the last few decades. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, in a broad range of application fields including aerospace, automotive, defense and sports engineering.

As the mechanical behavior and performance of composites varies under different dynamic loading regimes and velocities, the book is divided into sections that examine the different loading regimes and velocities. Part one examine low-velocity loading and part two looks at high-velocity loading. Part three then assesses shock and blast (i.e. contactless) events and the final part focuses on impact (contact) events. As sports applications of composites are linked to a specific subset of dynamic loading regimes, these applications are reviewed in the final part.


  • Examines dynamic deformation and fracture of composite materials
  • Covers experimental, analytical and numerical aspects
  • Addresses important application areas such as aerospace, automotive, wind energy and defence, with a special section on sport applications
  • Englisch
  • San Diego
Elsevier Science
  • 21,52 MB
978-0-08-100083-0 (9780081000830)
0081000839 (0081000839)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Related titles
  • Dynamic Deformation, Damage and Fracture in Composite Materials and Structures
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Composites Science and Engineering
  • 1 - Introduction
  • One - Low-velocity loading
  • 2 - Damage tolerance of composite structures under low-velocity impact
  • 2.1 Introduction
  • 2.2 Principles of damage tolerance
  • 2.3 The different damage types
  • 2.4 Impact damage
  • 2.5 Damage detectability
  • 2.6 Residual strength after impact
  • 2.7 Impact threat
  • 2.8 Conclusions
  • References
  • 3 - Damage in laminates from low-velocity impacts
  • 3.1 Introduction
  • 3.2 Impact damage
  • 3.2.1 Failure mechanisms and general trends
  • 3.2.1.1 Damage initiation
  • 3.2.1.2 Damage size evolution
  • 3.2.2 Effects of material properties
  • 3.2.3 Reinforcement architecture
  • 3.2.3.1 Effects of layup and ply clustering
  • 3.2.3.2 Stitched laminates
  • 3.2.3.3 Z-pinning
  • 3.2.3.4 Fiber metal laminates
  • 3.2.4 Nano-size reinforcements
  • 3.2.4.1 Nano-reinforcement at the fiber-matrix interface
  • 3.2.4.2 Interleaving with nanofiber veils
  • 3.2.4.3 Interleaving with carbon nanotubes or graphene nanoribbons
  • 3.2.4.4 Multiscale composites
  • 3.2.5 Properties of the projectile and the target
  • 3.2.6 Effect of preloads
  • 3.2.7 Repeated and multiple impacts
  • 3.3 Damage detection and structural health monitoring
  • 3.3.1 Nondestructive evaluation using Lamb waves
  • 3.3.2 Digital image correlation
  • 3.3.3 Deflectometry
  • 3.3.4 Vibration-based methods for health monitoring
  • 3.3.4.1 Impact force reconstruction
  • 3.3.4.2 Impact location
  • 3.3.4.3 Damage detection
  • 3.3.5 Optical fiber sensors
  • 3.3.6 Electrical resistance measurements
  • 3.4 Impact damage predictions for low-velocity impacts
  • 3.4.1 Intralaminar failure
  • 3.4.2 Interlaminar failure
  • 3.4.3 Constitutive modeling
  • 3.4.4 Contact mechanics
  • 3.4.2.1 Empirical approaches
  • 3.4.2.2 Elasticity approaches
  • 3.5 Conclusions
  • References
  • 4 - Multiscale modeling of delamination damage in laminated structures
  • 4.1 Introduction
  • 4.2 Models for laminated structures
  • 4.2.1 Modeling damage evolution in laminated structures loaded dynamically
  • 4.2.2 Zig-zag theories for multilayered structures with fully bonded and imperfectly bonded layers
  • 4.3 A multiscale model for multilayered plates with imperfect interfaces and delaminations
  • 4.3.1 Assumptions
  • 4.3.2 Small-scale kinematics, down-scaling relationships, and macro-scale displacements
  • 4.3.2.1 Small-scale kinematics
  • 4.3.2.2 Down-scaling relationships
  • 4.3.2.3 Macro-scale displacements in wide plates with sliding interfaces
  • 4.3.3 Homogenized dynamic field equations
  • 4.3.3.1 Homogenized dynamic equilibrium equations in wide plates with sliding interfaces
  • 4.3.4 Asymptotic limits of the model in wide plates
  • 4.3.4.1 Fully bonded asymptotic limit in unidirectionally reinforced laminated plate
  • 4.3.4.2 Fully debonded asymptotic limit in multilayered plates
  • 4.4 Static and dynamic characteristics of laminated plates with cohesive interfaces and delaminations subjected to thermomechan ...
  • 4.4.1 Explicit expressions for generalized displacements and stresses
  • 4.4.1.1 Uniform transverse loading
  • Fully bonded limit in unidirectionally reinforced laminates
  • Fully debonded limit
  • 4.4.1.2 Sinusoidal transverse loading
  • 4.4.2 Stress and displacement fields in highly anisotropic plates
  • 4.4.3 Dynamic characteristics of plates with interfacial damage
  • 4.5 Conclusions
  • Acknowledgments
  • References
  • 4. Appendix
  • Force and moment resultants
  • Loading terms
  • Inertia forces and couples
  • Coefficients: Geometry, layup, and status of the interfaces
  • Mechanical and geometrical boundary conditions
  • Additional condition for the uncoupled system of equations
  • Prescribed forces and moments at the plate ends
  • Coefficients: free vibrations in unidirectionally reinforced laminate with n equal thickness layers
  • 5 - Low-velocity impact of composite laminates: damage evolution
  • 5.1 Introduction
  • 5.2 Composite damage criteria
  • 5.2.1 Background
  • 5.2.2 Damage initiation criteria
  • 5.2.3 Damage evolution criteria
  • 5.2.3.1 Tensile failure modes
  • 5.2.3.2 Fibre compressive failure mode
  • 5.2.3.3 Matrix compressive failure mode
  • 5.2.4 Nonlinear shear failure mode
  • 5.3 Damage prediction of composites under low-velocity impact
  • 5.3.1 Impact tests
  • 5.3.2 Modelling impact-induced damage using damage criteria methods
  • 5.3.3 Modelling impact-induced matrix cracking and splitting using cohesive zone elements
  • 5.4 Conclusions
  • References
  • 6 - Low-velocity impact on laminates
  • 6.1 Low-velocity impact on thin and thick laminates
  • 6.2 Low-velocity impact on thin and thick laminates under preload (tension/compression)
  • 6.2.1 Uniaxial preloading
  • 6.2.2 Biaxial preloading
  • 6.2.2.1 Analytical and numerical solutions
  • 6.3 Low-velocity impact on curved laminates
  • 6.4 Conclusions
  • References
  • Two - High-velocity loading
  • 7 - High-velocity impact damage in CFRP laminates
  • 7.1 Introduction
  • 7.2 Experiments
  • 7.2.1 Factors affecting high-velocity impact damage
  • 7.2.2 High-velocity impact test
  • 7.2.3 Material
  • 7.3 Experimental results
  • 7.3.1 Unidirectional laminate
  • 7.3.2 Simple cross-ply laminate
  • 7.3.3 Cross-ply laminate with many ply interfaces
  • 7.3.4 Quasi-isotropic laminate
  • 7.4 Discussion
  • 7.4.1 Mechanism of high-velocity impact damage
  • 7.4.2 Influence of stacking sequence on damage severity
  • 7.4.3 Influence of toughened interlayers on damage severity
  • 7.5 Conclusions
  • References
  • 8 - Dynamic damage in FRPs: from low to high velocity
  • 8.1 Introduction
  • 8.2 Impact response of composite materials
  • 8.2.1 Low-velocity impact
  • 8.2.2 Intermediate-velocity impact
  • 8.2.3 High-velocity (ballistic) impact
  • 8.3 Damage mechanisms of FRPs under high-velocity impact
  • 8.3.1 Air-blast response
  • 8.3.2 Ballistic response
  • 8.4 Air-blast response of curved CFRP laminates
  • 8.4.1 Introduction
  • 8.4.2 Experimental procedure
  • 8.4.2.1 Material and specimens
  • 8.4.2.2 Shock-loading apparatus and loading conditions
  • 8.4.3 Finite-element model
  • 8.4.3.1 Material model
  • Damage initiation
  • Modelling rate-dependency
  • Delamination modelling
  • 8.4.3.2 Finite-element model setup
  • 8.4.3.3 Fluid-structure coupling and shock-wave loading
  • 8.4.4 Results and discussion
  • 8.4.4.1 Finite-element model validation
  • 8.4.4.2 Modes of deflection in CFRP panels
  • 8.4.4.3 Damage in CFRP panels
  • 8.4.4.4 Energy distribution during blast
  • 8.5 Ballistic impact response of hybrid woven FRPs
  • 8.5.1 Introduction
  • 8.5.2 Ballistic experiments
  • 8.5.3 Finite-element model
  • 8.5.4 Results and discussions
  • 8.5.4.1 V50 for same-target thickness and per-unit areal density
  • 8.5.4.2 Damage in composite panels
  • 8.5.4.3 Contribution of damage modes to energy absorption
  • 8.6 Conclusions
  • Acknowledgements
  • References
  • Three - Shock and blast
  • 9 - The dynamic loading response of carbon-fiber-filled polymer composites
  • 9.1 Introduction
  • 9.1.1 Applications of carbon-fiber composites and dynamic-loading conditions
  • 9.1.2 Shock-wave compression concepts
  • 9.1.3 Impedance matching
  • 9.1.4 General features of polymers and composites under shock-wave loading
  • 9.2 Materials
  • 9.2.1 Filament-wound and chopped carbon-fiber-polymer composites
  • 9.2.1.1 Carbon-fiber-epoxy composites
  • 9.2.1.2 Carbon-fiber-phenolic and carbon-fiber-cyanate ester composites
  • 9.3 Methods
  • 9.3.1 Gas-gun-driven plate impact experiments
  • 9.3.2 Equation of state modeling
  • 9.3.2.1 Linear us-up fit
  • 9.3.2.2 Hayes model
  • 9.3.2.3 SESAME model
  • 9.3.2.4 Summary
  • 9.4 Results
  • 9.4.1 Resins
  • 9.4.1.1 Epoxy resins
  • 9.4.1.2 Phenolic resins
  • 9.4.1.3 Carbon-fiber-polymer composites
  • Carbon-fiber-epoxy composites
  • Carbon-fiber-phenolic and carbon-fiber-cyanate ester composites
  • 9.5 Discussion of shock response of CP and CE composites
  • 9.5.1 Strength and anisotropy
  • 9.5.2 Shock-driven dissociation in CP and CE composites
  • 9.5.3 Equation of state modeling
  • 9.6 Summary and conclusions
  • Acknowledgments
  • References
  • 10 - The response to underwater blast
  • 10.1 Introduction
  • 10.2 Laboratory-scale underwater blast experiments
  • 10.2.1 The apparatus and its calibration
  • 10.2.1.1 Unsupported air-backed configuration
  • 10.2.1.2 Unsupported water-backed configuration
  • 10.2.1.3 Clamped air-backed plate configuration
  • 10.2.2 Generation and propagation of blast waves in the shock tube
  • 10.2.3 Processing and analysis of measurements
  • 10.3 Experimental results
  • 10.3.1 Monolithic construction
  • 10.3.2 Sandwich construction
  • 10.3.3 Circular composite plates
  • 10.4 Modelling and optimisation
  • 10.4.1 Outline of analytical models
  • 10.4.2 Analytical predictions and optimal design maps
  • 10.5 Conclusions
  • Acknowledgements
  • References
  • 11 - Dynamic loading of composite structures with fluid-structure interaction
  • 11.1 Introduction
  • 11.2 Experimental study of impact on composite structures with FSI
  • 11.2.1 Description of experiment
  • 11.2.2 Experimental results and discussion
  • 11.3 Numerical analysis of impact on composite structures with FSI
  • 11.4 Experimental study of vibration of composite structures in water
  • 11.5 Numerical analysis of vibration of composite structures in water
  • 11.6 Experimental study of cyclic loading of composite structures with FSI
  • 11.7 Numerical analysis of cyclic loading of composite structures with FSI
  • 11.8 Conclusions
  • References
  • 12 - Shock loading of polymer composites
  • 12.1 Shock propagation in composites
  • 12.1.1 Experimental techniques
  • 12.1.2 The Hugoniot
  • 12.1.3 The Hugoniot elastic limit of composites
  • 12.1.4 Shocks through the thickness
  • 12.1.5 The shape of the shock profile and shock attenuation
  • 12.1.6 Spall behaviour of polymer composites
  • 12.1.7 Shocks along the fibre direction
  • 12.2 The response of composites to air-blast loads
  • 12.2.1 The nature of the blast wave in air
  • 12.2.2 Experimental techniques
  • 12.2.3 Some basics
  • 12.2.4 Damage mechanisms
  • 12.2.5 The blast response of carbon- and glass-based laminates
  • 12.2.6 The blast response of polyurea-based composites
  • 12.2.7 The response of sandwich panels to blast loading
  • 12.3 Concluding remarks and future research needs
  • References
  • 13 - Blast response of sandwich structures: the influence of curvature
  • 13.1 Introduction
  • 13.2 Materials and manufacturing
  • 13.3 Quasi-static material characterisation
  • 13.3.1 Three-point bend tests on sandwich beams
  • 13.3.2 Compression tests on foam core samples
  • 13.3.3 Three-point bend tests on face-sheet materials
  • 13.4 Blast test method
  • 13.5 Blast test results
  • 13.5.1 Failure modes exhibited in air-blasted sandwich panels
  • 13.6 Discussion
  • 13.6.1 Effect of curvature on impulse transfer
  • 13.6.2 Failure mode initiation
  • 13.6.2.1 Flat panels
  • 13.6.2.1 Flat panels
  • 13.6.2.1 Flat panels
  • 13.6.2.2 Curved panels
  • 13.6.3 Spatial distribution of failure
  • 13.6.3.1 Delamination
  • 13.6.3.2 Debonding
  • 13.6.4 Effect of curvature on failure distribution
  • 13.6.4.1 Front face sheets
  • 13.6.4.2 Back face sheets
  • 13.6.4.3 Cores
  • 13.7 Conclusions
  • References
  • 14 - Cellular sandwich composites under blast loads
  • 14.1 Introduction
  • 14.2 Shock waves during blast events
  • 14.2.1 Attenuation of a shock wave
  • 14.2.2 Generalities of a shock wave generated by an explosion
  • 14.2.3 Peak pressure
  • 14.2.4 Dynamic pressure
  • 14.2.5 Reflected pressure
  • 14.2.6 Specific impulse generated in the explosion
  • 14.2.7 Scaling of free-field explosions
  • 14.3 Material behavior of cellular materials
  • 14.3.1 Quasi-static behavior
  • 14.3.2 Dynamic behavior
  • 14.3.3 Energy absorption in cellular materials
  • 14.3.4 Test setups for measuring energy absorption
  • 14.4 Shock-wave attenuation by cellular core sandwich composite
  • 14.4.1 Sandwich plates with honeycombs
  • 14.4.2 Sandwich panels with a structured core
  • 14.4.3 Sandwich panels with metallic foams
  • 14.4.4 Sandwich panels with polymeric foams
  • 14.4.5 Sandwich panels with open foam and shear thickening fluid
  • 14.4.6 Sandwich configuration effect
  • 14.5 Conclusions
  • References
  • Four - Impact and penetration
  • 15 - Ballistic impact behavior of composites: analytical formulation
  • 15.1 Introduction
  • 15.2 Materials for ballistic protection
  • 15.3 Composites for high-performance applications
  • 15.4 Ballistic impact on composite targets
  • 15.4.1 Penetration and perforation process
  • 15.4.2 Damage and energy-absorbing mechanisms
  • 15.4.3 Analytical formulation
  • 15.4.3.1 Assumptions
  • 15.4.3.2 Projectile velocity through energy balance
  • 15.4.3.3 Formulation for the first time interval
  • 15.4.3.4 Contact force on the target and projectile displacement for the first time interval
  • 15.4.3.5 Energy absorbed by compression of the target directly below the projectile (Region 1)
  • 15.4.3.6 Energy absorbed by compression in the region surrounding the impacted zone (Region 2)
  • 15.4.3.7 Energy absorbed due to stretching and tensile failure of yarns/layers in the region consisting of primary yarns
  • 15.4.3.8 Energy absorbed due to tensile deformation of yarns/layers in the region consisting of secondary yarns
  • 15.4.3.9 Energy absorbed by shear plugging
  • 15.4.3.10 Energy absorbed by delamination and matrix cracking
  • 15.4.3.11 Velocity and contact force at the end of first iteration of the first time interval
  • 15.4.3.12 Velocity and contact force during second and subsequent iterations of the first time interval
  • 15.4.3.13 Formulation from the second time interval up to the end of the ballistic impact event
  • 15.4.3.14 Projectile tip displacement
  • 15.4.3.15 Energy absorbed by compression
  • 15.4.3.16 Total number of layers failed
  • 15.4.3.17 Energy absorbed by tension
  • 15.4.3.18 Energy absorbed by shear plugging
  • 15.4.3.19 Energy absorbed by delamination and matrix cracking
  • 15.4.3.20 Mass of the moving cone and energy absorbed by conical deformation
  • 15.4.3.21 Energy absorbed by friction between the projectile and the target
  • 15.4.3.22 Velocity of the projectile, contact force, and projectile tip displacement
  • 15.5 Solution procedure
  • 15.5.1 Input parameters
  • 15.5.2 Steps involved
  • 15.6 Experimental studies
  • 15.6.1 Experimental details
  • 15.6.2 Experimental observations and validation
  • 15.6.3 Experimental observations and comparison with analytical predictions
  • 15.7 Results and discussion
  • 15.7.1 Energy absorbed by different mechanisms
  • 15.7.2 Contact force, projectile velocity, and tip displacement
  • 15.7.3 Ballistic impact behavior of different materials
  • 15.7.4 Strain rate during ballistic impact event
  • 15.7.5 Effect of incident impact velocity on projectile tip displacement
  • 15.7.6 Effect of target thickness on ballistic impact performance
  • 15.8 Enhancing ballistic protection capability of composite targets
  • 15.8.1 Hybrid composites
  • 15.8.2 3D composites
  • 15.8.3 Composites dispersed with nanoparticles
  • 15.9 Conclusions
  • Acknowledgments
  • References
  • 15. Appendix A
  • Stress-strain data at high strain rates: 2D plain-weave E-glass-epoxy
  • 15. Appendix B
  • Stress-strain data at high strain rates: 2D 8H satin-weave T300 carbon-epoxy
  • 15. Appendix C
  • Frictional behavior of composites: 2D plain weave E-glass/epoxy and 2D 8H satin-weave T300 carbon-epoxy
  • 16 - Impact resistance of sandwich plates
  • 16.1 Introduction
  • 16.2 Damage-mitigating sandwich plate designs
  • 16.3 Experimental assessment of impact resistance of sandwich plates
  • 16.3.1 Constituent materials
  • 16.3.1.1 Quasi-static tests
  • 16.3.1.2 High-strain tests
  • 16.3.2 Indentation
  • 16.3.3 Impact
  • 16.4 Modeling
  • 16.4.1 Finite-element model
  • 16.4.2 Finite-element results
  • 16.5 Conclusions
  • Acknowledgments
  • References
  • 17 - Impact behaviour of fibre-metal laminates
  • 17.1 Introduction
  • 17.2 Parameters affecting impact behaviour of FMLs
  • 17.2.1 Parameters for the FML laminate structure
  • 17.2.1.1 Constituent parameters
  • 17.2.1.2 Other parameters
  • 17.2.2 Effects of experimental conditions
  • 17.2.3 Energy-dissipation mechanisms
  • 17.3 Low-velocity impacts on FMLs
  • 17.3.1 Experimental studies
  • 17.3.1.1 GLARE (glass fibre/aluminium)
  • 17.3.1.2 Other FMLs: ARALL (aramid fibre/aluminium), CARALL (carbon fibre/aluminium) and Ti/GFRP laminates
  • 17.3.2 Numerical modelling
  • 17.4 High-velocity impacts on FMLs
  • 17.4.1 Experimental studies
  • 17.4.1.1 GLARE (glass fibre/aluminium)
  • 17.4.1.2 Other FMLs: polypropylene-based FMLs, Al/SFRP FML and elastomer-based FMLs
  • 17.4.2 Numerical modelling
  • 17.5 Response of FMLs under blast loading
  • 17.6 Comparison of properties and performance of FMLs
  • 17.7 Summary and future prospects
  • Acknowledgement
  • References
  • Five - Sports applications
  • 18 - Impact performance of sports composites
  • 18.1 Introduction
  • 18.2 Background
  • 18.2.1 Bat performance
  • 18.2.2 Bat construction
  • 18.3 Experiment
  • 18.4 Results
  • 18.4.1 The effect of composite bat break-in on performance
  • 18.4.2 Comparison of natural and accelerated bat break-in
  • 18.5 Discussion
  • 18.6 Summary
  • Acknowledgments
  • References
  • 19 - Dynamic large-deflection bending of laminates
  • 19.1 Introduction
  • 19.2 Experimental methods
  • 19.2.1 Material
  • 19.2.2 Dynamic testing
  • 19.2.3 Discussion of experimental results
  • 19.2.4 Damage characterisation
  • 19.3 Finite-element simulations
  • 19.3.1 Modelling strategy
  • 19.3.2 Model features and solution
  • 19.3.3 Inter-ply and intra-ply damage modelling
  • 19.3.4 Discussion of simulation results
  • 19.3.4.1 Response of damaged specimen
  • 19.3.4.2 Response of fractured specimen
  • 19.4 Conclusions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

267,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok