Thermodynamic Approaches in Engineering Systems

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 20. Mai 2016
  • |
  • 738 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-809339-9 (ISBN)
 

Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems.

This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research.

  • Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion
  • Written by a first-class expert in the field of advanced methods in thermodynamics
  • Provides a synthesis of recent thermodynamic developments in practical systems
  • Presents very elaborate literature discussions from the past fifty years


Prof. Stanislaw Sieniutycz (1940), PhD; ScD, since 1983 a full Professor of Chemical Engineering at Warsaw TU, Poland. Former head of Department of Process Separation at the Institute of Chemical Engineering of Warsaw TU, Poland, 1986-1989. Seminar speaker in about 40 Universities of the USA, 1984-1994. He received MsD in Chemistry in 1962, PhD in Chemical Engineering in 1968, and ScD (habilitation) in Chemical Engineering in 1973, all from Warsaw TU. Visiting professor in Universities: Budapest (Physics), Bern (Physiology), Trondheim (Chemical Physics), San Diego SU (Mathematics), Delaware (Chemical Engineering), and, several times, Chicago (Chemistry). Recognized for applications of analytical mechanics and optimal control in engineering. Author or co-author of about 250 papers and many books: Optimization in Process Engineering (WNT Warsaw 1991); Practice in Optimization (with Z. Szwast; WNT, Warsaw 1982); Conservation Laws in Variational Thermo-Hydrodynamics (Kluwer, Dordrecht 1995); Energy Optimization in Process Systems and Fuel Cells (with J. Je?owski; Elsevier, Oxford 2009 and 2013); Thermodynamic Approaches in Engineering Systems (Elsevier, Oxford 2016).
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 16,65 MB
978-0-12-809339-9 (9780128093399)
0128093390 (0128093390)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1 - Contemporary Thermodynamics for Engineering Systems
  • 1.1 - Introduction
  • 1.1.1 - Energy Transformation Laws
  • 1.1.2 - Property Relationship Laws
  • 1.1.3 - Energy Conversion and Its Efficiency
  • 1.2 - Basic Structure of Nonequilibrium Thermodynamic Theory
  • 1.3 - Extremum Properties of Thermodynamic Systems
  • 1.3.1 - Equilibrium Problems
  • 1.3.2 - Jaynes's and Callen's Bridges From Equilibrium to Disequilibrium
  • 1.3.3 - Steady-State Problems
  • 1.3.4 - Nonstationary Nonequilibrium Problems
  • 1.3.5 - Example of Dissipative Dynamics
  • 1.3.5.1 - Introduction
  • 1.3.5.2 - Kinetic potentials, optimization criteria and maximum principle
  • 1.3.5.3 - Reversible motions
  • 1.3.5.4 - Irreversible motions
  • 1.3.5.5 - Conserved irreversible Hamiltonian
  • 1.3.5.6 - Some additional remarks
  • 1.4 - Classical Motion of Heat Quasiparticles in Thermal Field
  • 1.5 - Thermodynamic Geometries
  • 1.5.1 - Equilibrium Metrics
  • 1.5.2 - Nonequilibrium Metrics
  • 1.6 - A Finite Rate Exergy
  • 1.7 - Thermodynamics of Transport and Rate Processes
  • 1.7.1 - Introduction
  • 1.7.2 - The Significance of Kinetic Equations
  • 1.7.3 - Transport and Rate Phenomena
  • 1.8 - Complex Thermodynamic Systems
  • 1.8.1 - Introduction
  • 1.8.2 - Classical and Quasi-Classical Complex Systems
  • 1.8.3 - Progress in Extended Thermodynamics of Complex Systems
  • Chapter 2 - Variational Approaches to Nonequilibrium Thermodynamics
  • 2.1 - Introduction: State of Art, Aims, and Scope
  • 2.2 - Systems With Heat and Mass Transfer Without Chemical Reaction
  • 2.3 - Gradient Representations of Thermal Fields
  • 2.4 - Inclusion of Chemical Processes
  • 2.5 - Change of Thermodynamic Potential
  • 2.6 - From Adjoined Constraints to Potential Representations of Thermal Fields
  • 2.7 - Action Functional for Hyperbolic Transport of Heat
  • 2.8 - Evolution Described by Single Poissonian Brackets
  • 2.9 - Extension of Theory to Multiphase Systems
  • 2.10 - Final Remarks
  • Chapter 3 - Wave Equations of Heat and Mass Transfer
  • 3.1 - Introduction
  • 3.2 - Relaxation Theory of Heat Flux
  • 3.3 - Extended Thermodynamics of Coupled Heat and Mass Transfer
  • 3.4 - Various Forms of Wave Equations for Coupled Heat and Mass Transfer
  • 3.5 - Stability of Dissipative Wave Systems
  • 3.6 - Variational Principles
  • 3.7 - Other Applications
  • 3.8 - High-Frequency Behavior of Thermodynamic Systems
  • 3.9 - Further Work
  • Chapter 4 - Classical and Anomalous Diffusion
  • 4.1 - Introduction
  • 4.2 - Classical Picture of Diffusion
  • 4.3 - Introducing Anomalous Diffusion
  • 4.4 - Compte's and Jou's (1996) Treatment
  • 4.4.1 - Application of Tsallis Theory
  • 4.4.2 - Fractal Entropy and Generalized Diffusion Equation
  • 4.4.3 - Some Special Cases
  • 4.4.4 - Conclusions of Compte and Jou (1996)
  • 4.5 - Zanette's (1999) Treatment
  • 4.5.1 - Introduction
  • 4.5.2 - Anomalous Diffusion and Lévy Flights
  • 4.5.2.1 - Anomalous diffusion in nature
  • 4.5.2.2 - Random-walk models of anomalous diffusion
  • 4.5.3 - Maximum-Entropy Formalism for Anomalous Diffusion
  • 4.5.3.1 - Traditional formalism
  • 4.5.3.2 - Generalized formalism
  • 4.5.4 - Conclusions of Zanette (1999)
  • 4.6 - Discussion of Selected Works
  • 4.6.1 - General Statistical Mechanics and Stochastic Systems
  • 4.6.2 - Diffusion
  • Chapter 5 - Thermodynamic Lapunov Functions and Stability
  • 5.1 - Introduction
  • 5.2 - Qualitative Properties of Paths Around Equilibrium and Pseudoequilibrium Points
  • 5.3 - Stability of Steady States Close to Equilibrium
  • 5.4 - Chemically Reacting Systems, Fluctuations, and Turbulent Flows
  • 5.5 - Periodic States, Oscillatory Systems, and Chaotic Solutions
  • 5.6 - Stability of Thermal Fields in Resting and Flow Systems Far From Equilibrium
  • 5.7 - New Approach to Lapunov Functions and Functionals
  • 5.8 - Further Work
  • 5.9 - Concluding Remarks
  • Chapter 6 - Analyzing Drying Operations in Thermodynamic Diagrams
  • 6.1 - Introduction
  • 6.2 - Modeling of Moisture Extraction in Drying Systems
  • 6.3 - Graphical Approach to Drying of Single Grain and Drying in Fluidized Beds
  • 6.3.1 - Drying of Single Grain by Gas Whose State is a Function of Time
  • 6.3.2 - Fluidized Drying of Solid by a Gas with Parameters Variable in Time
  • 6.3.3 - Fluidizing Systems with Thermodynamic Equilibrium in the Outlet Stream
  • 6.4 - Grain Drying in Countercurrent, Crosscurrent, and Concurrent Gas Flows
  • 6.5 - Graphical Classification of Experimental Data
  • 6.6 - Concluding Remarks
  • 6.7 - Appendix: Some Associated Drying Problems
  • Chapter 7 - Frictional Fluid Flow Through Inhomogeneous Porous Bed
  • 7.1 - Introduction
  • 7.2 - A Discrete Model Leading to a Bending Law
  • 7.3 - Bending of Fluid Paths in Inhomogeneous Porous System
  • 7.4 - Variational Approach to Nonlinear Darcy's Flow
  • 7.5 - Use of Hamilton-Jacobi-Bellman Theory
  • 7.6 - Extensions to Other Systems
  • 7.7 - Example
  • 7.8 - Final Remarks
  • Chapter 8 - Thermodynamics and Optimization of Practical Processes
  • 8.1 - Introduction
  • 8.2 - Backgrounds for Optimizing in Thermodynamic Systems
  • 8.3 - Mathematical Methods of Optimization
  • 8.3.1 - Static Methods
  • 8.3.2 - Dynamic Methods
  • 8.3.3 - Viscosity Solutions
  • 8.4 - Sorption Models for Minimal Catalyst Deactivation
  • 8.5 - An Excursion to Bejan's Constructal Theory
  • 8.6 - Discussion of Research Works
  • Chapter 9 - Thermodynamic Controls in Chemical Reactors
  • 9.1 - Introduction
  • 9.2 - Stoichiometry of General Chemical Reactions
  • 9.3 - Driving Forces of Transport and Rate Processes
  • 9.4 - Nonlinear Macrokinetics of Chemical Processes
  • 9.5 - Heterogeneities, Affinities, and Chemical Ohm's Law
  • 9.6 - Other Important Results Advancing the Field
  • 9.7 - Stability and Fluctuations in Chemical Reactions
  • 9.8 - Instabilities and Limit Cycles
  • 9.9 - Chaos and Fractals in Chemical Word
  • 9.10 - Power Yield in Chemical Engines
  • 9.10.1 - Introduction
  • 9.10.2 - Principles of Modeling of Power Yield in Chemical Systems
  • 9.10.3 - Thermodynamics of Power Production in Chemical Engines
  • 9.10.4 - Entropy Generation in Steady Systems
  • 9.10.5 - Characteristics of Steady Isothermal Engines
  • 9.10.6 - Sequential Models for Computation of Dynamic Generators
  • 9.10.7 - Further Problems
  • Chapter 10 - Power Limits in Thermochemical Units, Fuel Cells, and Separation Systems
  • 10.1 - Introduction
  • 10.2 - Internal Dissipation in Steady Thermal Systems
  • 10.3 - Selected Results for Dynamical Thermal Systems
  • 10.4 - Radiation Engines by the Stefan-Boltzmann Equations
  • 10.5 - Hamiltonians and Canonical Equations
  • 10.6 - Simple Chemical and Electrochemical Systems
  • 10.7 - Power Yield and Power Limits in FCs
  • 10.8 - Exergy and Second Law Analyses of FC Systems
  • 10.9 - Limits on Power Consumption in Thermochemical Systems
  • 10.10 - Estimate of Minimum Power Supplied to Power Consumers
  • 10.11 - Final Remarks
  • Chapter 11 - Thermodynamic Aspects of Engineering Biosystems
  • 11.1 - Introduction
  • 11.2 - Control of Biological Reactions and Decaying Enzymes
  • 11.3 - Biophysics and Bioenergetics
  • 11.4 - Power Yield and Exergy-Valued Biofuels
  • 11.5 - Ecology and Ecological Optimization
  • 11.6 - Fractals and Erythrocytes
  • 11.7 - Animal Locomotion and Pulsating Physiologies
  • 11.8 - Thermostatistics of Helix-Coil Transitions
  • 11.9 - Biochemical Cycles in Living Cells
  • 11.10 - Elucidation of Protein Sequence-Structure Relations
  • 11.11 - Complexity, Self-organization, Evolution, and Life
  • Chapter 12 - Multiphase Flow Systems
  • 12.1 - Introduction
  • 12.2 - Aspects of Thermodynamics of Surfaces and Interfaces
  • 12.3 - Heating or Cooling Policies Minimizing Entropy Production
  • 12.4 - Optimal Control in Imperfect Multiphase Systems
  • 12.5 - Turbulent Mixtures, Instabilities, and Phase Transitions
  • 12.6 - Multiphase Chemical Reactors and Regenerators
  • 12.7 - Final Remarks
  • Chapter 13 - Radiation and Solar Systems
  • 13.1 - Introduction
  • 13.2 - Basic Problems in Radiation Thermodynamics
  • 13.3 - Conversion of Solar Flux into a Heating Medium
  • 13.4 - Maximum of Exergy or Work Fluxes in Radiation Systems
  • 13.5 - Solar Buildings and Solar Systems
  • 13.6 - Closing Remarks
  • Chapter 14 - Appendix: A Causal Approach to Hydrodynamics and Heat Transfer
  • 14.1 - Introduction
  • 14.2 - Action, Lagrangian and Thermohydrodynamic Potentials
  • 14.3 - Basic Information on Thermal Inertia
  • 14.4 - Matter Tensor of General Relativistic Theory
  • 14.5 - Thermal Mass and Modified Temperatures
  • 14.6 - Tensor of Matter Including Heat and Viscous Stress
  • 14.7 - Conclusions and Final Remarks
  • References
  • Glossary
  • Principal Symbols
  • Greek Symbols
  • Subscripts
  • Superscripts
  • Abbreviations and Acronyms
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok