Statistical Inversion of Electromagnetic Logging Data

 
 
Springer (Verlag)
  • erschienen am 27. August 2020
  • |
  • VII, 79 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-030-57097-2 (ISBN)
 

This book presents a comprehensive introduction to well logging and the inverse problem. It explores challenges such as conventional data processing methods' inability to handle local minima issues, and presents the explanations in an easy-to-follow way.

The book describes statistical data interpretation by introducing the fundamentals behind the approach, as well as a range of sampling methods. In each chapter, a specific method is comprehensively introduced, together with representative examples.

The book begins with basic information on well logging and logging while drilling, as well as a definition of the inverse problem. It then moves on to discuss the fundamentals of statistical inverse methods, Bayesian inference, and a new sampling method that can be used to supplement it, the hybrid Monte Carlo method. The book then addresses a specific problem in the inversion of downhole logging data, and the interpretation of earth model complexity, before concluding with a meta-technique called the tempering method, which serves as a supplement to statistical sampling methods.

Given its scope, the book offers a valuable reference guide for drilling engineers, well logging tool physicists, and geoscientists, as well as students in the areas of petroleum engineering and electrical engineering.


1st ed. 2021
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 41
  • |
  • 2 s/w Abbildungen, 41 farbige Abbildungen
  • |
  • 2 schwarz-weiße und 41 farbige Abbildungen, Bibliographie
  • 3,85 MB
978-3-030-57097-2 (9783030570972)
10.1007/978-3-030-57097-2
weitere Ausgaben werden ermittelt
Qiuyang Shen is a research scientist of Cyentech Consulting. He received his Bachelor's degree in telecommunication engineering from Huazhong University of Science and Technology, China, in 2015 and his Ph.D. degree in electrical engineering from University of Houston in 2019. His research interests include Bayesian inference, big data analysis, machine learning, and well logging. He has published over 10 technical journal and conference papers.

Jiefu Chen received his Ph.D. degree in electrical engineering from Duke University in 2010. He was a Staff Scientist with Advantage R&D Center, Weatherford International, from March 2011 to August 2015. Since then, he has been with University of Houston, where he is currently an Assistant Professor of Electrical and Computer Engineering. He has published more than 100 technical journal and conference papers on computational electromagnetics, subsurface wireless communication, and well logging.

Xuqing Wu is an Assistant Professor of Computer Information Systems in the College of Technology at the University of Houston. His research interests include machine learning, inverse problems, subsurface sensing, and computer vision. Prior to joining the University of Houston in 2015, he was a data scientist and modeling engineer at Schlumberger. He received his Ph.D. degree in Computer Science from the University of Houston.

Yueqin Huang received his Ph.D. degree in electrical engineering from Xiamen University, China, in 2011. She was an Assistant Professor with Xiamen University, Xiamen, China, from August 2011 to August 2012. Currently she is the Chief Scientist of Cyentech Consulting LLC, Cypress, TX. She has published more than 30 technical journal and conference papers on subsurface sensing and communication.

Zhu Han received his B.Sc in electronic engineering from Tsinghua University, in 1997, and his M.S. and Ph.D. degrees in electrical and computer engineering from the University of Maryland, College Park, in 1999 and 2003, respectively. From 2000 to 2008, he worked in industry and academic positions, including as an assistant professor at Boise State University, Idaho. Currently, he is a John and Rebecca Moores Professor in the Electrical and Computer Engineering Department as well as in the Computer Science Department at the University of Houston. His research interests include wireless resource allocation and management, wireless communications and networking, game theory, big data analysis, security, and smart grid. Dr Han has received several awards and best paper prizes including an NSF Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society in 2011, and the IEEE Leonard G. Abraham Prize in the field of Communications Systems in 2016. Dr Han is IEEE fellow since 2014, AAAS fellow since 2019 and ACM distinguished member since 2019.

Introduction.- Foundation of Bayesian Inversion and Sampling Methods.- Beyond the Random Walk: a Hybrid Monte Carlo Sampling.- Interpret Model Complexity: Trans-Dimensional Markov Chain Monet Carlo Method.- Accelerated Bayesian Inversion Using Parallel Tempering

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

53,49 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

53,49 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen