Abbildung von: MALDI-TOF and Tandem MS for Clinical Microbiology - Wiley

MALDI-TOF and Tandem MS for Clinical Microbiology

Wiley (Verlag)
Erschienen am 30. März 2017
648 Seiten
E-Book
PDF mit Adobe-DRM
978-1-118-96024-0 (ISBN)
139,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Adobe-DRM
E-Book Einzellizenz
Als Download verfügbar
This book highlights the triumph of MALDI-TOF mass spectrometry over the past decade and provides insight into new and expanding technologies through a comprehensive range of short chapters that enable the reader to gauge their current status and how they may progress over the next decade. This book serves as a platform to consolidate current strengths of the technology and highlight new frontiers in tandem MS/MS that are likely to eventually supersede MALDI-TOF MS. Chapters discuss:
Challenges of Identifying Mycobacterium to the Species level
Identification of Bacteroides and Other Clinically Relevant Anaerobes
Identification of Species in Mixed Microbial Populations
Detection of Resistance Mechanisms
Proteomics as a biomarker discovery and validation platform
Determination of Antimicrobial Resistance using Tandem Mass Spectrometry
EDITORS
Haroun N. Shah, Department of Natural Sciences, Middlesex University, London, UK
Saheer E. Gharbia, Genomic Research, Public Health England, London, U
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 9]
4 - List of Contributors [Seite 23]
5 - Preface A Brief Tour of the Technology and New Grounds for Innovation [Seite 31]
6 - Part I MALDI-TOF Mass Spectrometry [Seite 35]
6.1 - 1 A Paradigm Shift from Research to Front-Line Microbial Diagnostics in MALDI-TOF and LC-MS/MS: A Laboratory's Vision and Relentless Resolve to Help Develop and Implement This New Technology amidst Formidable Obstacles [Seite 37]
6.1.1 - 1.1 Introduction [Seite 37]
6.1.1.1 - 1.1.1 Personal Experience at the Interface of Systematics and Diagnostics [Seite 38]
6.1.1.2 - 1.1.2 MALDI-TOF MS: The Early Years [Seite 38]
6.1.1.3 - 1.1.3 The Formidable Challenge to Gain the Confidence of the Clinical Microbiologist in MALDI-TOF MS [Seite 40]
6.1.2 - 1.2 Overcoming the Variable Parameters of MALDI-TOF MS Analysis: Publication of the First Database in 2004 [Seite 42]
6.1.3 - 1.3 SELDI-TOF MS: A Powerful but Largely Unrecognized Microbiological MALDI-TOF MS Platform [Seite 50]
6.1.4 - 1.4 MALDI-TOF MS as a Platform for DNA Sequencing [Seite 52]
6.1.5 - 1.5 Insights into the Proteome of Major Pathogens 2005-2009: Field Testing of MALDI-TOF MS [Seite 55]
6.1.6 - 1.6 2010-2011: The Triumph of MALDI-TOF MS and Emerging Interest in Tandem MS for Clinical Microbiology [Seite 56]
6.1.7 - 1.7 Preparations for MALDI-TOF MS Analysis on a Grand Scale: The Looming London 2012 Olympics [Seite 59]
6.1.8 - 1.8 Investigating the Detection and Pathogenic Potential of E. coli O104:H4 during Outbreak of 2011 [Seite 60]
6.1.8.1 - 1.8.1 The Transition from MALDI-TOF MS to High-Resolution LC-MS/MS: Merits of Bottom-Up and Top-Down Proteomics for Microbial Characterization [Seite 63]
6.1.9 - 1.9 Conclusions [Seite 67]
6.1.10 - References [Seite 68]
6.2 - Chapter 2 Criteria for Development of MALDI-TOF Mass Spectral Database [Seite 73]
6.2.1 - 2.1 Introduction [Seite 73]
6.2.2 - 2.2 Commercially Available Databases [Seite 73]
6.2.3 - 2.3 Establishment of User?Defined Databases [Seite 75]
6.2.4 - 2.4 Species Identification/Control of Reference Strains to Be Included into a Database [Seite 76]
6.2.5 - 2.5 Sample Preparation [Seite 77]
6.2.5.1 - 2.5.1 Microorganism Cultivation [Seite 77]
6.2.5.2 - 2.5.2 MALDI Sample Preparation [Seite 78]
6.2.6 - 2.6 MALDI-TOF MS Measurement [Seite 79]
6.2.7 - 2.7 Quality Control during Creation and after Establishment of Reference Libraries [Seite 80]
6.2.8 - 2.8 Common Influencing Factors for MALDI-TOF MS [Seite 80]
6.2.8.1 - 2.8.1 Influencing Factors, Specifically Weighted for MALDI Biotyper [Seite 80]
6.2.8.2 - 2.8.2 Selection of Strains [Seite 81]
6.2.8.3 - 2.8.3 Sample Preparation for Measurement [Seite 81]
6.2.8.4 - 2.8.4 Mass Spectrometry Measurement [Seite 82]
6.2.8.5 - 2.8.5 Spectra Analysis/Quality Control [Seite 82]
6.2.8.6 - 2.8.6 MSP Creation and Analysis/Quality Control [Seite 84]
6.2.9 - 2.9 User-Created and Shared Databases: Examples and Benefits [Seite 84]
6.2.10 - References [Seite 85]
6.3 - Chapter 3 Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology [Seite 89]
6.3.1 - 3.1 Introduction [Seite 89]
6.3.2 - 3.2 Principle of Microorganisms Identification using MALDI-TOF MS [Seite 90]
6.3.2.1 - 3.2.1 Soft Ionization and MS Applied to Microorganisms Identification [Seite 90]
6.3.2.2 - 3.2.2 Biomarker Proteins [Seite 0]
6.3.2.3 - 3.2.3 Current Commercial MALDI-TOF MS Instruments [Seite 92]
6.3.2.4 - 3.2.4 Automated Colony Picking [Seite 93]
6.3.3 - 3.3 Factors Impacting the Accuracy of MALDI-TOF MS Identifications [Seite 93]
6.3.3.1 - 3.3.1 The Importance of the Database [Seite 93]
6.3.3.2 - 3.3.2 Quality of the Spectrum and Standardization of the Pre?analytic [Seite 94]
6.3.3.3 - 3.3.3 Limit of Detection [Seite 94]
6.3.3.4 - 3.3.4 Errors and Misidentifications [Seite 94]
6.3.3.5 - 3.3.5 Mixed Bacterial Populations [Seite 94]
6.3.3.6 - 3.3.6 Closely Related Species [Seite 95]
6.3.4 - 3.4 Identification of Microorganisms from Positive Cultures [Seite 95]
6.3.4.1 - 3.4.1 Identification from Positive Cultures on Solid Media [Seite 95]
6.3.4.2 - 3.4.2 Identification from Positive Blood Cultures [Seite 98]
6.3.5 - 3.5 Identification of Microorganisms Directly from Samples [Seite 99]
6.3.5.1 - 3.5.1 Urine [Seite 99]
6.3.5.2 - 3.5.2 Cerebrospinal Fluid [Seite 101]
6.3.6 - 3.6 Microorganisms Requiring a Specific Processing for MALDI-TOF MS Identification [Seite 102]
6.3.6.1 - 3.6.1 Nocardia and Actinomycetes [Seite 102]
6.3.6.2 - 3.6.2 Mycobacteria [Seite 102]
6.3.6.3 - 3.6.3 Yeast and Fungi [Seite 103]
6.3.7 - 3.7 Detection of Antimicrobial Resistance [Seite 104]
6.3.7.1 - 3.7.1 Carbapenemase Detection [Seite 104]
6.3.7.2 - 3.7.2 Methicillin-Resistant S. aureus [Seite 105]
6.3.7.3 - 3.7.3 Vancomycin-Resistant Enterococci [Seite 105]
6.3.8 - 3.8 Detection of Bacterial Virulence Factors [Seite 105]
6.3.9 - 3.9 Typing and Clustering [Seite 106]
6.3.9.1 - 3.9.1 MRSA Typing [Seite 106]
6.3.9.2 - 3.9.2 Enterobacteriaceae Typing [Seite 107]
6.3.9.3 - 3.9.3 Typing Mycobacterium spp. [Seite 107]
6.3.10 - 3.10 Application of MALDI-TOF MS in Clinical Virology [Seite 107]
6.3.11 - 3.11 PCR-Mass Assay [Seite 108]
6.3.11.1 - 3.11.1 Application of PCR-Mass Assay in Clinical Bacteriology [Seite 108]
6.3.11.2 - 3.11.2 Application of PCR-Mass Assay in Clinical Virology [Seite 108]
6.3.12 - 3.12 PCR-ESI MS [Seite 109]
6.3.13 - 3.13 Impact of MALDI-TOF MS in Clinical Microbiology and Infectious Disease [Seite 109]
6.3.13.1 - 3.13.1 Time to Result [Seite 109]
6.3.13.2 - 3.13.2 Impact on Patient Management [Seite 110]
6.3.13.3 - 3.13.3 Impact on Rare Pathogenic Bacteria and Difficult-to-Identify Organisms [Seite 110]
6.3.13.4 - 3.13.4 Anaerobes [Seite 111]
6.3.14 - 3.14 Identification of Protozoan Parasites [Seite 111]
6.3.15 - 3.15 Identification of Ticks and Fleas [Seite 111]
6.3.16 - 3.16 Costs [Seite 112]
6.3.17 - 3.17 Conclusions [Seite 112]
6.3.18 - References [Seite 113]
6.4 - Chapter 4 The Challenges of Identifying Mycobacterium to the Species Level using MALDI-TOF MS [Seite 127]
6.4.1 - Part 4A Modifications of Standard Bruker Biotyper Method [Seite 127]
6.4.2 - 4A.1 Taxonomic Structure of the Genus Mycobacterium [Seite 127]
6.4.3 - 4A.2 Tuberculosis-Causing Mycobacteria [Seite 129]
6.4.4 - 4A.3 Non-tuberculosis Mycobacteria [Seite 129]
6.4.5 - 4A.4 MALDI-TOF MS Mycobacteria Library and Parameters for Identification [Seite 132]
6.4.6 - 4A.5 Methods for Extraction [Seite 133]
6.4.6.1 - 4A.5.1 Method: Bruker's Protocol [Seite 133]
6.4.6.2 - 4A.5.2 The Methods of Khéchine et al., 2011 [Seite 133]
6.4.6.3 - 4A.5.3 Silica/Zirconium Bead Variation [Seite 135]
6.4.6.4 - 4A.5.4 Results and Recommendations [Seite 135]
6.4.7 - 4A.6 Protein Profiling of Cell Extracts using SELDI-TOF MS [Seite 138]
6.4.8 - 4A.7 Conclusion [Seite 138]
6.4.9 - References [Seite 140]
6.4.10 - Part 4B ASTA's MicroID System and Its MycoMp Database for Mycobacteria [Seite 144]
6.4.11 - 4B.1 Introduction [Seite 144]
6.4.11.1 - 4B.1.1 The Genus Mycobacterium, Disease and MALDI-TOF Mass Spectrometry [Seite 144]
6.4.12 - 4B.2 MycoMp Database for Mycobacterium: The ASTA Mycobacterial Database [Seite 145]
6.4.13 - 4B.3 MicroID Software [Seite 145]
6.4.14 - 4B.4 Database [Seite 146]
6.4.15 - 4B.5 MycoMP Database for Mycobacteria [Seite 147]
6.4.16 - 4B.6 Conclusion [Seite 154]
6.4.17 - References [Seite 154]
6.5 - Chapter 5 Transformation of Anaerobic Microbiology since the Arrival of MALDI-TOF Mass Spectrometry [Seite 157]
6.5.1 - 5.1 Introduction [Seite 157]
6.5.2 - 5.2 Identification in the Clinical Laboratory [Seite 159]
6.5.3 - 5.3 Pre-analytical Requirements Influence Species Identification of Anaerobic Bacteria [Seite 160]
6.5.4 - 5.4 Recent Database Developments for Anaerobes [Seite 163]
6.5.5 - 5.5 Application of the MALDI-TOF MS Method for Routine Identification of Anaerobes in the Clinical Practice [Seite 165]
6.5.6 - 5.6 The European Network for the Rapid Identification of Anaerobes (ENRIA) Project [Seite 168]
6.5.7 - 5.7 Subspecies-Level Typing of Anaerobic Bacteria Based on Differences in Mass Spectra [Seite 169]
6.5.8 - 5.8 Impact of MALDI-TOF MS on Subspecies Classification of Propionibacterium acnes: Insights into Protein Expression using ESI-MS-MS [Seite 170]
6.5.9 - 5.9 Direct Identification of Anaerobic Bacteria from Positive Blood Cultures [Seite 174]
6.5.10 - References [Seite 174]
6.6 - Chapter 6 Differentiation of Closely Related Organisms using MALDI-TOF MS [Seite 181]
6.6.1 - 6.1 Introduction [Seite 181]
6.6.2 - 6.2 Experimental Methods [Seite 183]
6.6.2.1 - 6.2.1 Strains and Traditional Identification [Seite 183]
6.6.2.2 - 6.2.2 PCR Identification [Seite 184]
6.6.2.3 - 6.2.3 MALDI-TOF MS Identification [Seite 185]
6.6.3 - 6.3 Results [Seite 187]
6.6.3.1 - 6.3.1 Semiautomated Models [Seite 187]
6.6.3.2 - 6.3.2 Automated Models [Seite 187]
6.6.3.3 - 6.3.3 Hybrid Models [Seite 189]
6.6.3.4 - 6.3.4 MALDI-TOF MS versus Traditional Identification Methods [Seite 190]
6.6.4 - 6.4 Discussion and Implications [Seite 192]
6.6.5 - Acknowledgments [Seite 196]
6.6.6 - References [Seite 196]
6.7 - Chapter 7 Identification of Species in Mixed Microbial Populations using MALDI?TOF MS [Seite 201]
6.7.1 - 7.1 Introduction [Seite 201]
6.7.2 - 7.2 A New Algorithm to Identify Mixed Species in a MALDI-TOF Mass Spectrum [Seite 202]
6.7.2.1 - 7.2.1 Mixed Spectrum Model [Seite 202]
6.7.2.2 - 7.2.2 Algorithm Description [Seite 204]
6.7.2.3 - 7.2.3 A Simulation Framework to Optimize the Model Parameters [Seite 206]
6.7.3 - 7.3 Toward Direct-Sample Polymicrobial Identification from Positive Blood Cultures [Seite 206]
6.7.3.1 - 7.3.1 Microbial Panel Considered [Seite 208]
6.7.3.2 - 7.3.2 Qualifying the Success of the Identification [Seite 208]
6.7.3.3 - 7.3.3 In Silico Experiments [Seite 209]
6.7.4 - 7.4 In Vitro Experiments [Seite 212]
6.7.5 - 7.5 Discussion and Perspectives [Seite 215]
6.7.6 - References [Seite 218]
6.8 - Chapter 8.1 Microbial DNA Analysis by MALDI-TOF Mass Spectrometry [Seite 221]
6.8.1 - Part 8A DNA Analysis of Viral Genomes using MALDI-TOF Mass Spectrometry [Seite 221]
6.8.2 - 8A.1 Introduction [Seite 221]
6.8.3 - 8A.2 The Molecular Detection and Identification of Viruses [Seite 222]
6.8.4 - 8A.3 Viral Quantification [Seite 223]
6.8.5 - 8A.4 The Characterization of Viral Genetic Heterogeneity [Seite 224]
6.8.6 - 8A.5 Viral Transmission Monitoring [Seite 226]
6.8.7 - 8A.6 Additional Nucleic Acid Applications of MALDI-TOF MS [Seite 227]
6.8.8 - 8A.7 Conclusion [Seite 227]
6.8.9 - References [Seite 227]
6.8.10 - Part 8B Mass Spectral Analysis of Proteins of Nonculture and Cultured Viruses [Seite 231]
6.8.11 - 8B.1 Introduction [Seite 231]
6.8.12 - 8B.2 Norovirus Identification using MS [Seite 233]
6.8.13 - 8B.3 Sample Preparation Considerations [Seite 234]
6.8.14 - 8B.4 Experimental Workflow [Seite 234]
6.8.15 - 8B.5 Detection of Intact VP1 using MALDI-TOF and SELDI-TOF MS [Seite 234]
6.8.16 - 8B.6 Peptide Mass Fingerprinting [Seite 236]
6.8.17 - 8B.7 Conclusions [Seite 237]
6.8.18 - 8B.8 Bacteriophage Identification using MS [Seite 240]
6.8.19 - 8B.9 Bacteriophages [Seite 240]
6.8.20 - 8B.10 Protein Identification [Seite 240]
6.8.21 - 8B.11 Conclusions [Seite 242]
6.8.22 - References [Seite 242]
6.9 - Chapter 9 Impact of MALDI-TOF MS in Clinical Mycology [Seite 245]
6.9.1 - 9.1 Introduction [Seite 245]
6.9.2 - 9.2 Evolution in Commercial Methodologies of Sample Preparation [Seite 247]
6.9.2.1 - 9.2.1 Fungal Identification [Seite 247]
6.9.2.2 - 9.2.2 MALDI Biotyper [Seite 248]
6.9.2.3 - 9.2.3 VITEK® MS [Seite 251]
6.9.2.4 - 9.2.4 MS LT2-ANDROMAS [Seite 252]
6.9.3 - 9.3 Effect of In-House Sample Preparation on Database Reliability [Seite 252]
6.9.3.1 - 9.3.1 Yeast Identification in Pure Culture [Seite 252]
6.9.3.2 - 9.3.2 Filamentous Fungi Identification [Seite 256]
6.9.4 - 9.4 Conclusion [Seite 259]
6.9.5 - References [Seite 260]
6.10 - Chapter 10 Development and Application of MALDI-TOF for Detection of Resistance Mechanisms [Seite 265]
6.10.1 - 10.1 Attempts to Correlate Signature Mass Ions in MALDI-TOF MS Profiles with Antibiotic Resistance [Seite 265]
6.10.2 - 10.2 Distribution and Spread of Carbapenems and Mass Spectrometry [Seite 267]
6.10.3 - 10.3 Carbapenem-Resistant Enterobacteriaceae [Seite 268]
6.10.4 - 10.4 MALDI-TOF MS Detection Based upon Changes in Antibiotic Structure due to Bacterial Degradation Enzymes [Seite 268]
6.10.5 - 10.5 Optimization of the Carbapenemase MALDI-TOF MS-Based Assay to Minimize the Time-to-Result [Seite 270]
6.10.6 - 10.6 Detection of Other Bacterial Enzymic Modifications to Antibiotic Structures [Seite 272]
6.10.7 - 10.7 Isotopic Detection using MALDI-TOF MS [Seite 273]
6.10.8 - 10.8 Multi-Resistant Pseudomonas aeruginosa [Seite 276]
6.10.9 - 10.9 MALDI Biotyper Antibiotic Susceptibility Test Rapid Assay (MBT-ASTRAT) [Seite 276]
6.10.10 - 10.10 The Potential Use of Mass Spectrometry for Antibiotic Testing in Yeast [Seite 278]
6.10.11 - References [Seite 279]
6.11 - Chapter 11 Discrimination of Burkholderia Species, Brucella Biovars, Francisella tularensis and Other Taxa at the Subspecies Level by MALDI-TOF Mass Spectrometry [Seite 283]
6.11.1 - 11.1 Introduction [Seite 283]
6.11.2 - 11.2 Principles of MALDI-TOF MS?Based Identification of Bacteria [Seite 283]
6.11.3 - 11.3 Generality versus Specificity [Seite 284]
6.11.4 - 11.4 Shigatoxin-Producing and Enterohemorrhagic Escherichia coli (STEC and EHEC) [Seite 285]
6.11.5 - 11.5 Francisella tularensis [Seite 287]
6.11.6 - 11.6 The Genus Brucella [Seite 289]
6.11.7 - 11.7 The Genus Burkholderia [Seite 290]
6.11.8 - 11.8 Studying Closely Related Organisms by MALDI-TOF MS [Seite 291]
6.11.8.1 - 11.8.1 Sample Selection [Seite 292]
6.11.8.2 - 11.8.2 Spectrum Processing [Seite 292]
6.11.8.3 - 11.8.3 Choosing Software for Statistical Calculations [Seite 292]
6.11.8.4 - 11.8.4 Search for Taxon-Specific Markers [Seite 293]
6.11.8.5 - 11.8.5 Spectrum-Based Cluster Analysis [Seite 293]
6.11.8.6 - 11.8.6 Statistical Models for Classification [Seite 293]
6.11.8.7 - 11.8.7 External Validation [Seite 294]
6.11.9 - 11.9 Conclusion [Seite 294]
6.11.10 - References [Seite 295]
6.12 - Chapter 12 MALDI-TOF-MS Based on Ribosomal Protein Coding in S10-spc-alpha Operons for Proteotyping [Seite 303]
6.12.1 - 12.1 Introduction [Seite 303]
6.12.2 - 12.2 S10-GERMS Method [Seite 306]
6.12.2.1 - 12.2.1 Background of Proteotyping [Seite 306]
6.12.2.2 - 12.2.2 Construction Procedures of the Working Database for MALDI-TOF MS Analysis [Seite 307]
6.12.2.3 - 12.2.3 Application of Standardized S10-GERMS Method to Bacterial Typing [Seite 311]
6.12.3 - 12.3 Conclusion: Computer-Aided Proteotyping of Bacteria Based on the S10-GERMS Method [Seite 335]
6.12.4 - References [Seite 337]
7 - Part II Tandem MS/MS-Based Approaches to Microbial Characterization [Seite 345]
7.1 - Chapter 13 Tandem Mass Spectrometry Analysis as an Approach to Delineate Genetically Related Taxa [Seite 347]
7.1.1 - Part A [Seite 347]
7.1.2 - 13.1 Introduction [Seite 347]
7.1.3 - 13.2 Methods [Seite 350]
7.1.4 - 13.3 Results [Seite 355]
7.1.4.1 - 13.3.1 16S rRNA Identification [Seite 355]
7.1.4.2 - 13.3.2 MALDI-TOF MS Identification [Seite 355]
7.1.5 - 13.4 Candidate Biomarker Discovery: Shotgun Sampling of Enterobacteriaceae Proteomes by GeLC-MS/MS [Seite 359]
7.1.5.1 - 13.4.1 Database Optimization and Testing [Seite 359]
7.1.5.2 - 13.4.2 Demonstrating Capability to Delineate Pathotypes using E. coli 0104:H4 as an Exemplar [Seite 359]
7.1.6 - 13.5 Discussion [Seite 365]
7.1.7 - Part B [Seite 367]
7.1.8 - 13.6 Highly Pathogenic Biothreat Agents [Seite 367]
7.1.9 - 13.7 Bacillus anthracis [Seite 368]
7.1.9.1 - 13.7.1 Methods: Strain Panel [Seite 369]
7.1.9.2 - 13.7.2 Whole Cell Protein Extraction [Seite 369]
7.1.9.3 - 13.7.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins [Seite 370]
7.1.9.4 - 13.7.4 In-Solution Protein Digestion Directly from Protein Extracts [Seite 370]
7.1.9.5 - 13.7.5 1-D Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis [Seite 370]
7.1.9.6 - 13.7.6 Bioinformatic Workflow for Biomarker Detection [Seite 371]
7.1.9.7 - 13.7.7 Protein/Peptide Marker Identification [Seite 371]
7.1.9.8 - 13.7.8 Procedure for DNA Extraction [Seite 372]
7.1.9.9 - 13.7.9 DNA Extraction [Seite 372]
7.1.9.10 - 13.7.10 Genetic Validation of Candidate Peptide Biomarkers [Seite 372]
7.1.10 - 13.8 Summary of Results [Seite 376]
7.1.11 - 13.9 Yersinia pestis [Seite 378]
7.1.12 - 13.10 Method: Strain Panel [Seite 378]
7.1.12.1 - 13.10.1 Procedure for Whole Cell Protein Extraction [Seite 378]
7.1.12.2 - 13.10.2 One-Dimensional SDS-PAGE and In?Gel Digestion of Bacterial Proteins [Seite 378]
7.1.12.3 - 13.10.3 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis [Seite 378]
7.1.12.4 - 13.10.4 Bioinformatic Workflow for Biomarker Detection [Seite 379]
7.1.12.5 - 13.10.5 Genetic Validation of Peptide Biomarkers [Seite 379]
7.1.13 - 13.11 Summary of Results [Seite 379]
7.1.14 - 13.12 Fransicella tularensis [Seite 380]
7.1.15 - 13.13 Method [Seite 380]
7.1.15.1 - 13.13.1 Strain Panel [Seite 380]
7.1.15.2 - 13.13.2 Procedure for Whole Cell Protein Extraction [Seite 380]
7.1.15.3 - 13.13.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins [Seite 381]
7.1.15.4 - 13.13.4 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis [Seite 381]
7.1.15.5 - 13.13.5 Bioinformatic Workflow for Biomarker Detection [Seite 381]
7.1.15.6 - 13.13.6 Genetic Validation of Peptide Biomarkers [Seite 381]
7.1.16 - 13.14 Summary of Results [Seite 382]
7.1.17 - 13.15 Clostridium botulinum [Seite 384]
7.1.18 - 13.16 Method [Seite 385]
7.1.18.1 - 13.16.1 Strain Panel [Seite 385]
7.1.18.2 - 13.16.2 Procedure for Whole Cell Protein Extraction [Seite 385]
7.1.18.3 - 13.16.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins [Seite 386]
7.1.18.4 - 13.16.4 1-D Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis [Seite 386]
7.1.18.5 - 13.16.5 Bioinformatic Workflow for Biomarker Detection [Seite 386]
7.1.18.6 - 13.16.6 Procedure for DNA Extraction [Seite 387]
7.1.18.7 - 13.16.7 Genetic Validation of Peptide Biomarkers [Seite 387]
7.1.19 - 13.17 Summary of Results [Seite 389]
7.1.20 - 13.18 Burkholderia pseudomallei and B. mallei [Seite 389]
7.1.21 - 13.19 Method [Seite 391]
7.1.21.1 - 13.19.1 Strain Panel [Seite 391]
7.1.21.2 - 13.19.2 Procedure for Whole Cell Protein Extraction [Seite 391]
7.1.21.3 - 13.19.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins [Seite 392]
7.1.21.4 - 13.19.4 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis [Seite 392]
7.1.21.5 - 13.19.5 Bioinformatic Workflow for Biomarker Detection [Seite 392]
7.1.21.6 - 13.19.6 Procedure for DNA Extraction [Seite 392]
7.1.21.7 - 13.19.7 Genetic Validation of Peptide Biomarkers [Seite 392]
7.1.22 - 13.20 Summary of Results [Seite 394]
7.1.23 - 13.21 Biomarker Detection Sensitivity and Quantification [Seite 395]
7.1.24 - 13.22 Method [Seite 395]
7.1.24.1 - 13.22.1 Preparation of Stable Isotope?Labelled Peptides [Seite 396]
7.1.24.2 - 13.22.2 Preparation of Samples for Absolute Quantification [Seite 396]
7.1.24.3 - 13.22.3 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent MS Analysis [Seite 396]
7.1.24.4 - 13.22.4 Data Analysis [Seite 396]
7.1.25 - 13.23 Summary of Results [Seite 397]
7.1.26 - 13.24 Assay Sensitivity in Relation to Bacterial Cell Numbers [Seite 399]
7.1.26.1 - 13.24.1 Method [Seite 399]
7.1.26.2 - 13.24.2 Preparation of Cell Dilutions [Seite 399]
7.1.26.3 - 13.24.3 Cell Lysis Procedure [Seite 399]
7.1.26.4 - 13.24.4 Capture of Cells and Protein Material [Seite 401]
7.1.26.5 - 13.24.5 Trypsin Digestion on Filters [Seite 401]
7.1.27 - 13.25 Summary of Results [Seite 401]
7.1.28 - 13.26 Spiked Samples [Seite 402]
7.1.29 - 13.27 Method [Seite 402]
7.1.30 - 13.28 Summary of Results [Seite 402]
7.1.31 - 13.29 Spiked Cells [Seite 404]
7.1.32 - 13.30 Method [Seite 404]
7.1.33 - 13.31 Summary of Results [Seite 404]
7.1.34 - 13.32 B. anthracis Spore Analysis [Seite 404]
7.1.35 - 13.33 Method [Seite 404]
7.1.36 - 13.34 Summary of Results [Seite 405]
7.1.37 - 13.35 Assay Sensitivity in Relation to Bacterial Spore Numbers [Seite 405]
7.1.38 - 13.36 Method [Seite 405]
7.1.39 - 13.37 Summary of Results [Seite 406]
7.1.40 - 13.38 Summary of Results for Biomarker Detection Sensitivity [Seite 406]
7.1.41 - References [Seite 409]
7.2 - Chapter 14 Mapping of the Proteogenome of Clostridium difficile Isolates of Varying Virulence [Seite 413]
7.2.1 - 14.1 Introduction [Seite 413]
7.2.2 - 14.2 Virulence of Clostridium difficile [Seite 414]
7.2.2.1 - 14.2.1 Virulence Factors [Seite 414]
7.2.2.2 - 14.2.2 Variation between Strains [Seite 414]
7.2.3 - 14.3 Current Genomic and Proteomic Data [Seite 415]
7.2.4 - 14.4 Comparison of Strains of Varying Virulence [Seite 415]
7.2.5 - 14.5 Genomic Analysis of Clostridium difficile [Seite 416]
7.2.5.1 - 14.5.1 Using Roche's Flx and Junior [Seite 416]
7.2.5.2 - 14.5.2 PacBio Genomic Analysis [Seite 417]
7.2.6 - 14.6 Proteomic Analysis of Clostridium difficile [Seite 418]
7.2.6.1 - 14.6.1 Two-Dimensional Reference Mapping [Seite 418]
7.2.6.2 - 14.6.2 Differential In-Gel Electrophoresis (DIGE) [Seite 419]
7.2.6.3 - 14.6.3 One-Dimensional Gel Electrophoresis Coupled with LC-MS/MS [Seite 421]
7.2.7 - 14.7 Mapping the Proteogenome of Clostridium difficile to Phenotypic Profiles [Seite 422]
7.2.7.1 - 14.7.1 Toxin Expression [Seite 422]
7.2.7.2 - 14.7.2 Mucosal Adherence [Seite 423]
7.2.7.3 - 14.7.3 Flagella [Seite 424]
7.2.8 - 14.8 Antibiotic Resistance [Seite 428]
7.2.9 - 14.9 Conclusion [Seite 429]
7.2.10 - References [Seite 429]
7.3 - Chapter 15 Determination of Antimicrobial Resistance using Tandem Mass Spectrometry [Seite 433]
7.3.1 - 15.1 Antibiotic Resistance Mechanisms [Seite 433]
7.3.2 - 15.2 Detection of ?-lactamase Activity [Seite 435]
7.3.3 - 15.3 Other MALDI-TOF MS Methods [Seite 437]
7.3.4 - 15.4 Liquid Chromatography Coupled with MS [Seite 438]
7.3.5 - 15.5 Proteomics Approaches for Detection of Antibiotic Resistance [Seite 444]
7.3.6 - 15.6 Conclusion [Seite 448]
7.3.7 - References [Seite 449]
7.4 - Chapter 16 Proteotyping: Tandem Mass Spectrometry Shotgun Proteomic Characterization and Typing of Pathogenic Microorganisms [Seite 453]
7.4.1 - 16.1 Introduction [Seite 453]
7.4.2 - 16.2 MS and Proteomics [Seite 454]
7.4.3 - 16.3 MALDI TOF MS [Seite 456]
7.4.4 - 16.4 Tandem MS Shotgun Proteomic Analyses [Seite 460]
7.4.5 - 16.5 Top-Down Proteomics [Seite 460]
7.4.6 - 16.6 Bottom-Up Proteomics [Seite 462]
7.4.7 - 16.7 Proteotyping [Seite 464]
7.4.8 - 16.8 Matching MS Spectra to Peptides [Seite 468]
7.4.9 - 16.9 Mapping Peptides to Reference Sequences [Seite 469]
7.4.10 - 16.10 Taxonomic Assignment of Protein Sequences [Seite 470]
7.4.11 - 16.11 Challenges Assigning Fragments to Lower Taxonomic Levels [Seite 471]
7.4.12 - 16.12 Proteotyping for Diagnosing Infectious Diseases [Seite 473]
7.4.13 - 16.13 Outlook [Seite 475]
7.4.14 - 16.14 Conclusion [Seite 477]
7.4.15 - Acknowledgments [Seite 478]
7.4.16 - References [Seite 478]
7.5 - Chapter 17 Proteogenomics of Pseudomonas aeruginosa in Cystic Fibrosis Infections [Seite 485]
7.5.1 - 17.1 Introduction: Pseudomonas aeruginosa as a Clinically Important Pathogen [Seite 485]
7.5.2 - 17.2 CF and Pathophysiology [Seite 486]
7.5.3 - 17.3 CF Infections [Seite 486]
7.5.4 - 17.4 Biofilm Formation in P. aeruginosa [Seite 487]
7.5.5 - 17.5 Virulence of P. aeruginosa [Seite 488]
7.5.6 - 17.6 Genomics to Study Bacterial Pathogenesis [Seite 489]
7.5.7 - 17.7 Proteomics to Study Bacterial Pathogenesis [Seite 490]
7.5.8 - 17.8 Genomics of P. aeruginosa in CF Infections [Seite 491]
7.5.9 - 17.9 Interclonal Genome Diversity [Seite 492]
7.5.10 - 17.10 Intraclonal Genome Diversity [Seite 492]
7.5.11 - 17.11 Clonal Spread of P. aeruginosa in CF Patients [Seite 493]
7.5.12 - 17.12 Parallel Evolution [Seite 493]
7.5.13 - 17.13 Mutations in Early-Stage CF P. aeruginosa Isolates [Seite 494]
7.5.14 - 17.14 Mutations in Late-Stage CF P. aeruginosa Isolates [Seite 495]
7.5.15 - 17.15 Transcriptomics of P. aeruginosa in Chronic CF Infections [Seite 496]
7.5.16 - 17.16 Proteomics of P. aeruginosa in Chronic CF Infections [Seite 498]
7.5.17 - 17.17 Applications of Proteomics to P. aeruginosa Characterization [Seite 498]
7.5.18 - 17.18 Comparative Proteomic Investigation of Bis-(3?-5?)-Cyclic-Dimeric-GMP (C-Di-GMP) Regulation in P. aeruginosa [Seite 499]
7.5.19 - 17.19 Comparative Proteomics of Mucoid and Non-Mucoid P. aeruginosa Strains [Seite 500]
7.5.20 - 17.20 Proteogenomics Reveal Shifting in Iron Uptake of CF P. aeruginosa [Seite 500]
7.5.21 - 17.21 Conclusion and Future Perspectives [Seite 502]
7.5.22 - References [Seite 504]
7.6 - Chapter 18 Top-Down Proteomics in the Study of Microbial Pathogenicity [Seite 527]
7.6.1 - 18.1 Introduction [Seite 527]
7.6.2 - 18.2 Top-Down Analysis of Modified Bacterial Proteins in Targeted Mode [Seite 530]
7.6.3 - 18.3 Top-Down Analysis of Bacterial Proteins in Discovery Mode [Seite 532]
7.6.4 - 18.4 Top-Down Proteomics: The Next Step in Clinical Microbiology? [Seite 533]
7.6.5 - References [Seite 535]
7.7 - Chapter 19 Tandem Mass Spectrometry in Resolving Complex Gut Microbiota Functions [Seite 539]
7.7.1 - 19.1 Introduction [Seite 539]
7.7.1.1 - 19.1.1 Scope [Seite 539]
7.7.1.2 - 19.1.2 Strategies to Study Intestinal Microbiome [Seite 539]
7.7.2 - 19.2 MS in Microbiology [Seite 541]
7.7.3 - 19.3 Intestinal Metaproteomics Addressing All Proteins [Seite 546]
7.7.3.1 - 19.3.1 Preprocessing of the Sample [Seite 546]
7.7.3.2 - 19.3.2 Protein Extraction [Seite 547]
7.7.3.3 - 19.3.3 Protein Digestion [Seite 547]
7.7.3.4 - 19.3.4 Peptide Fractionation [Seite 547]
7.7.4 - 19.4 LC-MSMS Analysis [Seite 547]
7.7.5 - 19.5 Data Analysis [Seite 548]
7.7.5.1 - 19.5.1 Peptide Spectral Matching [Seite 548]
7.7.5.2 - 19.5.2 De Novo Sequencing [Seite 548]
7.7.5.3 - 19.5.3 Protein Quantification [Seite 549]
7.7.5.4 - 19.5.4 Metaproteomic Pipelines [Seite 549]
7.7.5.5 - 19.5.5 Data Storage [Seite 549]
7.7.6 - 19.6 Data Output and Interpretation [Seite 549]
7.7.7 - 19.7 Development of Surface Metaproteomics for Intestinal Microbiota [Seite 550]
7.7.7.1 - 19.7.1 Isolation of Bacteria from Fecal Samples [Seite 551]
7.7.7.2 - 19.7.2 Enrichment of the Surface Proteome from Fecal Bacterial Extract [Seite 551]
7.7.7.3 - 19.7.3 Detection of Surface Proteins by LC-MSMS [Seite 551]
7.7.8 - 19.8 Conclusions [Seite 556]
7.7.9 - References [Seite 557]
7.8 - Chapter 20 Proteogenomics of Non-model Microorganisms [Seite 563]
7.8.1 - 20.1 Introduction [Seite 563]
7.8.2 - 20.2 The "Proteogenomics" Concept [Seite 564]
7.8.3 - 20.3 Applications to Non-model Organisms: From Bacteria to Parasites [Seite 565]
7.8.4 - 20.4 Embracing Complexity with Metaproteogenomics [Seite 568]
7.8.5 - References [Seite 569]
7.9 - Chapter c21.A Analysis of MALDI-TOF MS Spectra using the BioNumerics Software [Seite 573]
7.9.1 - 21A.1 Introduction [Seite 573]
7.9.2 - 21A.2 Typing with MALDI-TOF MS [Seite 574]
7.9.3 - 21A.3 Preprocessing of Raw MALDI-TOF MS Data [Seite 574]
7.9.4 - 21A.4 Downsampling [Seite 575]
7.9.5 - 21A.5 Baseline Subtraction [Seite 576]
7.9.6 - 21A.6 Curve Smoothing [Seite 577]
7.9.7 - 21A.7 Peak Detection [Seite 580]
7.9.8 - 21A.8 Biological and Technical Replicates [Seite 580]
7.9.9 - 21A.9 Averaging of Replicates [Seite 583]
7.9.10 - 21A.10 Spectrum Analysis [Seite 584]
7.9.11 - 21A.11 Hierarchical Clustering [Seite 584]
7.9.12 - 21A.12 Alternatives to Cluster Analysis [Seite 588]
7.9.13 - 21A.13 Classifying Algorithms [Seite 593]
7.9.14 - 21A.14 Conclusion [Seite 595]
7.9.15 - References [Seite 595]
7.10 - Chapter c21.B Subtyping of Staphylococcus spp. Based upon MALDI-TOF MS Data Analysis [Seite 597]
7.10.1 - 21B.1 Introduction [Seite 597]
7.10.2 - 21B.2 Sample Collection [Seite 598]
7.10.3 - 21B.3 MALDI-TOF Mass Spectrometry [Seite 598]
7.10.4 - 21B.4 Cluster Analysis of Environmental Staphylococci [Seite 599]
7.10.5 - 21B.5 Antibiotic Susceptibility Test [Seite 599]
7.10.6 - 21B.6 Cluster Analysis of Staphylococcus spp. Recovered from Different Sites [Seite 600]
7.10.7 - 21B.7 Correlation of Staphylococci Recovered from Different Sites [Seite 601]
7.10.8 - 21B.8 Cluster Analysis of S. epidermidis Isolated from Different Sites [Seite 602]
7.10.9 - 21B.9 Cluster Analysis of S. aureus Isolated from Different Sites [Seite 603]
7.10.10 - 21B.10 Cluster Analysis of Staphylococcus spp. Combined with Antibiotic Susceptibility [Seite 603]
7.10.11 - 21B.11 Antibiotic Resistance Patterns of Closely Related S. epidermidis [Seite 604]
7.10.12 - 21B.12 Antibiotic Resistance Patterns of Closely Related S. aureus [Seite 604]
7.10.13 - 21B.13 Variations of Antibiotic Susceptibility of Closely Related S. epidermidis [Seite 606]
7.10.14 - 21B.14 Percentage of Multiple-Resistant Staphylococci Recovered from Each Site [Seite 606]
7.10.15 - 21B.15 Conclusion [Seite 607]
7.10.16 - References [Seite 609]
7.11 - Chapter c21.C Elucidating the Intra-Species Proteotypes of Pseudomonas aeruginosa from Cystic Fibrosis [Seite 613]
7.11.1 - 21C.1 The Emergence of Pseudomonas aeruginosa as Key Component of the Cystic Fibrosis Lung Flora [Seite 613]
7.11.2 - 21C.2 Diversity and Rational for Proteotyping [Seite 614]
7.11.3 - 21C.3 Selecting Representative Strains for Profiling [Seite 614]
7.11.4 - 21C.4 Selection of Strains against a Background of Their Variable Number Tandem Repeat (VNTR) Designation [Seite 615]
7.11.5 - 21C.5 Potential to Type P. aeruginosa using MALDI-TOF MS [Seite 615]
7.11.6 - 21C.6 Data Processing: Analyzing Data using BioNumerics 7 [Seite 616]
7.11.7 - 21C.7 Discussion and Data Interpretation [Seite 617]
7.11.8 - 21C.8 Going Forward - Reproducibility the Salient Determinant [Seite 621]
7.11.9 - References [Seite 622]
8 - Index [Seite 627]
9 - EULA [Seite 649]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten. 

Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer  E-Book Hilfe.