Manned Spacecraft Design Principles

 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. November 2015
  • |
  • 647 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-419976-7 (ISBN)
 

Manned Spacecraft Design Principles presents readers with a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system.

In the process of developing the preliminary design, the book covers content not often discussed in a standard aerospace curriculum, including atmospheric entry dynamics, space launch dynamics, hypersonic flow fields, hypersonic heat transfer and skin friction, along with the economic aspects of space flight.

Key concepts relating to human factors and crew support systems are also included, providing users with a comprehensive guide on how to make informed choices from an array of competing options. The book can be used in conjunction with Sforza's, Commercial Aircraft Design Principles to form a complete course in Aircraft/Spacecraft Design.


  • Involves the reader in the preliminary design of a modern manned spacecraft and associated launch vehicle
  • Contains standard, empirical, and classical methods in support of the design process
  • Culminates in the preparation of a professional quality design report


Pasquale Sforza received his PhD from the Polytechnic Institute of Brooklyn in 1965. He has taught courses related to commercial airplane design at the Polytechnic Institute of Brooklyn and the University of Florida. His research interests include propulsion, gas dynamics, and air and space vehicle design. Dr. Sforza has also acted as Co-Editor of the Journal of Directed Energy and Book Review Editor for the AIAA Journal. His previous books include Theory of Aerospace Propulsion (Butterworth-Heinemann, 2011) and Commercial Airplane Design Principles, (Butterworth-Heinemann, 2014)
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 36,59 MB
978-0-12-419976-7 (9780124199767)
0124199763 (0124199763)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Manned Spacecraft Design Principles
  • Copyright Page
  • Contents
  • Preface
  • Introduction and Outline of a Spacecraft Design Report
  • I.1 Subjects Covered
  • I.2 An Approach for a Design Course
  • I.2.1 Preparation of the Design Report
  • I.2.2 Outline of the Design Report
  • I.3 Suggestions for Report Preparation
  • 1 Manned Spaceflight
  • 1.1 Where Space Begins
  • 1.2 Staying in Space
  • 1.3 Getting into Space
  • 1.4 The First Fifty Years of Human Spaceflight
  • 1.5 The Near Future of Human Spaceflight
  • 1.6 Nomenclature
  • 1.6.1 Subscripts
  • References
  • 2 Earth's Atmosphere
  • 2.1 The Atmospheric Environment
  • 2.1.1 Vertical Structure According to Temperature
  • 2.1.2 Vertical Structure According to Composition
  • 2.2 Equation of State and Hydrostatic Equilibrium
  • 2.3 The 1976 U.S. Standard Atmosphere Model
  • 2.3.1 The Lower and Middle Atmosphere: 0-100km
  • 2.3.2 Properties of the Lower and Middle Atmosphere
  • 2.3.3 Atmospheric Scale Height
  • 2.3.4 The Upper Atmosphere: 100-500km
  • 2.4 Flow Properties Using the Atmospheric Models
  • 2.4.1 Reynolds Number and Mach Number
  • 2.4.2 Dynamic Pressure
  • 2.4.3 Atmospheric Property Curve Fits
  • 2.5 Tables of Atmospheric Properties
  • 2.5.1 Tables in SI Units
  • 2.5.2 Tables in English Units
  • 2.6 Other Model Atmospheres
  • 2.7 Nomenclature
  • 2.7.1 Subscripts
  • References
  • 3 The Space Environment
  • 3.1 Gravitational Effects
  • 3.2 Gas Density and Drag Effects
  • 3.3 The Sun
  • 3.4 The Magnetic Field
  • 3.5 Van Allen Radiation Belts
  • 3.6 The Ionosphere
  • 3.7 Meteoroids and Orbital Debris
  • 3.8 Spacecraft Charging
  • 3.9 Useful Constants, Acronyms, and Conversions
  • 3.10 Nomenclature
  • 3.10.1 Subscript
  • References
  • 4 Manned Hypersonic Missions in the Atmosphere
  • 4.1 Transatmospheric Manned Missions
  • 4.2 Transatmospheric Vehicles
  • 4.3 Flight Trajectories in the Atmosphere
  • 4.4 Reusable Spaceplane Design Issues
  • 4.4.1 Aerodynamic Design Issues
  • 4.4.2 Operational Design Issues
  • 4.4.3 Propulsion Design Issues
  • 4.5 Transatmospheric Flight Missions in the Near Future
  • 4.6 Nomenclature
  • 4.6.1 Subscripts
  • References
  • 5 Orbital Mechanics
  • 5.1 Space Mission Geometry
  • 5.1.1 Orbits and How They Work
  • 5.1.2 Closed Orbits in a Central Force Field
  • 5.1.3 Earth Orbit Characteristics
  • 5.1.4 In-Plane Orbital Transfer: Intersecting Orbits
  • 5.1.5 In-Plane Orbital Transfer: Nonintersecting Orbits
  • 5.2 Energy and Angular Momentum in Orbits
  • 5.2.1 Conservation of Energy
  • 5.2.2 Conservation of Angular Momentum
  • 5.2.3 Open Orbits: Parabolic Orbits and Escape Speed
  • 5.2.4 Open Orbits: Hyperbolic Orbits and Excess Speed
  • 5.3 Orbital Transfer for Atmospheric Entry
  • 5.4 The Ground Track of an Orbit
  • 5.4.1 Defining the Orbit
  • 5.4.2 The Spacecraft's Latitude
  • 5.4.3 The Spacecraft's Longitudinal Angle
  • 5.4.4 Effect of the Earth's Rotation on Longitude
  • 5.4.5 Effect of Regression of Nodes on Longitude
  • 5.4.6 Effect of Rotation of Apsides on Longitude
  • 5.4.7 The Spacecraft's Longitude
  • 5.4.8 A View of the Ground Tracks of the Example Cases
  • 5.5 The Spacecraft Horizon
  • 5.5.1 The Horizon Footprint
  • 5.5.2 Communication with the Spacecraft
  • 5.6 Interplanetary Trajectories
  • 5.6.1 Lunar Trajectories
  • 5.6.2 Martian Trajectories
  • 5.6.3 Other Planetary Trajectories
  • 5.7 Constants and Conversion Factors
  • 5.8 Nomenclature
  • 5.8.1 Subscripts
  • References
  • 6 Atmospheric Entry Mechanics
  • 6.1 General Equations of Motion
  • 6.2 Gliding Entry Trajectories
  • 6.2.1 The Ballistic Coefficient B
  • 6.2.2 The Equations in Terms of Density
  • 6.3 Deceleration During Entry
  • 6.3.1 Maximum Deceleration for Human Spaceflight
  • 6.3.2 Minimum Deceleration for Human Spaceflight
  • 6.3.3 Dynamic Pressure Corridor for Manned Spacecraft
  • 6.4 Heating During Entry
  • 6.4.1 Heat Transfer Corridor for Manned Spacecraft
  • 6.5 Ballistic Entry
  • 6.5.1 Ballistic or Zero-Lift Entry
  • 6.5.2 An Approximate Solution for Steep Ballistic Entry
  • 6.5.3 Typical Ballistic Entry Characteristics
  • 6.6 Gliding Entry
  • 6.6.1 Loh's Second-Order Approximate Solution
  • 6.6.2 Entry with Lift
  • 6.6.3 Low L/D Entry: Apollo
  • 6.6.4 Moderate L/D Entry: Space Shuttle Orbiter
  • 6.7 Low-Speed Return and Recovery: Parachutes
  • 6.7.1 Aerodynamics of Parachutes
  • 6.7.2 Parachute Design Parameters
  • 6.7.3 Parachute Materials
  • 6.7.4 Ringsail Parachutes
  • 6.8 Low-Speed Return and Recovery: Spaceplanes
  • 6.8.1 Low-Speed Characteristics of Spaceplanes
  • 6.8.2 Steep Glide from 5000 to 500m
  • 6.8.3 Preflare Pull-Up from 500 to 150m
  • 6.8.4 The Landing Air Run
  • 6.8.5 The Landing Ground Run
  • 6.9 Summary of Constants and Parameters
  • 6.9.1 Atmospheric Entry Parameters
  • 6.9.2 Flare and Landing Parameters
  • 6.10 Nomenclature
  • 6.10.1 Subscripts
  • References
  • 7 Launch Mechanics
  • 7.1 General Equations for Launch Vehicles
  • 7.2 Thrust, Lift, and Drag for a Simplified Boost Analysis
  • 7.2.1 Rocket Engine Thrust
  • 7.2.2 Launch Vehicle Drag and Lift
  • 7.3 The Nondimensional Equations of Motion
  • 7.4 Simplified Boost Analysis with Constant Thrust and Zero Lift and Drag
  • 7.4.1 Approximate Solution for Small Times
  • 7.4.2 Numerical Solutions for Zero Lift and Drag
  • 7.4.3 An Approximation for Burn-Out Velocity
  • 7.4.4 Trajectories After Burn-Out
  • 7.4.5 Effects of Earth's Rotation
  • 7.5 Staging of Rockets
  • 7.5.1 General Relations for Stacks and Stages
  • 7.5.2 Single Stage to Orbit
  • 7.5.3 Two-Stage Vehicle to Orbit
  • 7.5.4 Three-Stage Vehicle to Orbit
  • 7.5.5 Some Comments on Engine and Structure Weight
  • 7.6 Longitudinal Stability of Launch Vehicles
  • 7.6.1 Moments of Inertia of Launch Vehicles
  • 7.6.2 Force and Moment Estimation for Launch Vehicles
  • 7.6.3 Static Longitudinal Stability
  • 7.6.4 Fin-Stabilized Launch Vehicles
  • 7.6.5 Launch Vehicle Diameter Estimation
  • 7.6.6 Launch Vehicle Configuration Design
  • 7.6.7 Launch Vehicle Center of Pressure
  • 7.6.8 TVC Deflection Requirements
  • 7.7 General Launch Vehicle Design Considerations
  • 7.7.1 Liquid Propellant Tanks
  • 7.7.2 Solid Propellant Rockets
  • 7.8 Summary of Constants and Parameters
  • 7.9 Nomenclature
  • 7.9.1 Subscripts
  • 7.9.2 Superscripts
  • References
  • 8 Spacecraft Flight Mechanics
  • 8.1 Space Vehicle Flight Mechanics and Performance Analysis
  • 8.2 Hypersonic Aerodynamics
  • 8.2.1 Newtonian Flow Theory
  • 8.2.2 Applications to Pressure Force and Moment Analysis of a Spaceplane
  • 8.2.3 Boundary Layer Considerations
  • 8.2.4 Some Special Considerations in Computing Spaceplane Flow Fields
  • 8.3 Blunt Bodies in Hypersonic Flight
  • 8.3.1 Blunt Body L/D
  • 8.3.2 Capsule Afterbody Pressure
  • 8.3.3 Forces on Spherically Blunted Cones
  • 8.3.4 Newtonian Flow with a P-M Expansion
  • 8.4 Slender Bodies in Hypersonic Flight
  • 8.4.1 Slender Body L/D
  • 8.4.2 Laminar Skin Friction
  • 8.4.3 Turbulent Skin Friction
  • 8.4.4 Boundary Layer Transition
  • 8.4.5 High-Altitude Rarefaction Effects
  • 8.5 Thermodynamic Properties of Air
  • 8.5.1 Enthalpy and Compressibility
  • 8.5.2 Specific Heat and Sound Speed
  • 8.5.3 Real Gas Stagnation Temperature
  • 8.5.4 Simple Enthalpy Curve Fits
  • 8.5.5 The ?µ Product
  • 8.6 Dynamics of Spacecraft
  • 8.6.1 Longitudinal Static Stability
  • 8.6.2 Longitudinal Static Stability of Space Capsules
  • 8.6.3 Longitudinal Static Stability of Spaceplanes
  • 8.6.4 Lateral Static Stability
  • 8.6.5 Lateral Static Stability of Space Capsules
  • 8.6.6 Lateral Static Stability of Spaceplanes
  • 8.6.7 Longitudinal Dynamic Stability
  • 8.7 Spacecraft Control Systems
  • 8.7.1 RCS Characteristics
  • 8.7.2 Pulsed Thrust Operation
  • 8.7.3 Space Capsule Control Systems
  • 8.7.4 Spaceplane Control Systems
  • 8.8 Summary of Constants and Conversion Factors
  • 8.9 Nomenclature
  • 8.9.1 Subscripts
  • 8.9.2 Superscripts
  • References
  • 9 Thermal Protection Systems
  • 9.1 Basic Stagnation Point Heat Transfer Correlations
  • 9.2 Approximate Air Chemistry
  • 9.3 Stagnation Point Heat Transfer
  • 9.4 Heat Transfer Around a Hemispherical Nose
  • 9.5 Heat Transfer Around a Spherically Capped Cone
  • 9.6 Heat Shields for Reentry Vehicles
  • 9.6.1 Heat Sink Heat Shields with Constant Heat Transfer
  • 9.6.2 Heat Sink Heat Shields With Time-Varying Heat Transfer
  • 9.6.3 Convective Heat Transfer
  • 9.6.4 Finite Slab Heat Sink Heat Shields With Constant Heat Transfer
  • 9.6.5 Ablative Heat Shields with Constant Heat Transfer
  • 9.6.6 Mass Transfer for Heat Shield Thermal Protection
  • 9.6.7 Thermal Radiation of Spacecraft Surfaces
  • 9.6.8 Chemical Catalysis of Spacecraft Surfaces
  • 9.7 Heat Transfer Similarity Parameters
  • 9.7.1 Reynolds Analogy
  • 9.7.2 Calculating Surface Heating
  • 9.7.3 Heating Characteristics of Space Capsules
  • 9.7.4 Heating Characteristics of Spaceplanes
  • 9.8 Heat Shield Development and Practical Applications
  • 9.9 Constants, Conversions, and TPS Acronyms
  • 9.10 Nomenclature
  • 9.10.1 Subscripts
  • References
  • 10 Spacecraft Configuration Design
  • 10.1 The Spacecraft Environment and Its Effect on Design
  • 10.1.1 Passenger Volume Allowance in Aerospace Vehicles
  • 10.1.2 Application to Crew Volume in Spacecraft Cabins
  • 10.1.3 Cabin Volume and Flight Duration
  • 10.1.4 Crew Volume Allowance
  • 10.1.5 Spacecraft Mass Characteristics
  • 10.1.6 Ballistic Coefficient
  • 10.1.7 Spacecraft Configurations
  • 10.1.8 Spacecraft Cabins
  • 10.1.9 Service Modules
  • 10.2 EC and LS Systems
  • 10.2.1 Thermal Management and Control
  • 10.2.2 Spacecraft Atmosphere
  • 10.2.3 Water Recovery and Management
  • 10.2.4 Spacecraft Fire Detection and Suppression
  • 10.3 Structure, Propulsion, Power, and Control Systems
  • 10.3.1 Structural Loads and Dynamics
  • 10.3.2 Propulsion Systems
  • 10.3.3 Power Systems
  • 10.4 Crew Support Systems
  • 10.5 Nomenclature
  • 10.5.1 Subscripts
  • References
  • 11 Safety, Reliability, and Risk Assessment
  • 11.1 System Safety and Reliability
  • 11.2 Apportioning Mission Reliability
  • 11.3 The Reliability Function
  • 11.4 Failure Rate Models and Reliability Estimation
  • 11.5 Apportionment Goals
  • 11.6 Overview of Probabilistic Risk Assessment
  • 11.7 Top Functional Failures of Spacecraft
  • 11.7.1 Propulsion Failure
  • 11.7.2 Vehicle Configuration Failure
  • 11.7.3 Energetic Gas and Debris Containment Failure
  • 11.7.4 Vehicle Environmental Support Failure
  • 11.7.5 Externally Caused Failure
  • 11.8 PRA of the Space Shuttle
  • 11.9 Crew Flight Safety
  • 11.10 Human Factors in Risk Management
  • 11.11 The Weibull Distribution
  • 11.12 Nomenclature
  • 11.12.1 Subscripts
  • References
  • 12 Economic Aspects of Space Access
  • 12.1 Elements of Spacecraft Cost
  • 12.2 Costs of the Apollo Program
  • 12.3 Costs of the Space Shuttle Program
  • 12.4 Price Per Pound to Orbit
  • 12.5 Components of Launch Cost
  • 12.5.1 Nonrecurring Cost of Development
  • 12.5.2 Recurring Production Cost
  • 12.5.3 Cost of Flight Operations
  • 12.5.4 Cost of Refurbishment
  • 12.5.5 Cost of Recovery
  • 12.5.6 Cost of Insurance
  • 12.6 Cost Estimation Relations
  • 12.6.1 Cost of Development
  • 12.6.2 Production Cost of the First Units
  • 12.6.3 Space Launch Cost Reduction and Reusable Vehicles
  • 12.7 Nomenclature
  • 12.7.1 Subscripts
  • References
  • Appendix A: Hypersonic Aerodynamics
  • A.1 One-Dimensional Flow Relations
  • A.1.1 Effect of Chemical Reactions
  • A.1.2 Isentropic Flow
  • A.1.3 Isentropic Flow Equations
  • A.2 Normal Shocks
  • A.2.1 Limiting Shock Conditions in Hypersonic Flow
  • A.2.2 The Normal Shock Relations
  • A.3 Stagnation Pressure on a Body in Hypersonic Flow
  • A.4 Oblique Shocks
  • A.4.1 The Entropy Layer
  • A.4.2 Flow Deflection and the Shock Angle
  • A.5 Small Disturbance Theory
  • A.6 Prandtl-Meyer Expansion
  • A.7 Conical Flow
  • A.8 Newtonian Flow
  • A.9 Influence of Body Shape
  • A.10 Effects of Angle of Attack
  • A.10.1 Wedge at Angle of Attack
  • A.10.2 Smooth Blunt Bodies at Angle of Attack
  • A.10.3 Sharp Cones at Zero Angle of Attack
  • A.10.4 Sharp Cones at Small Angles of Attack
  • A.10.5 Unusual Shapes
  • A.11 Nomenclature
  • A.11.1 Subscripts
  • A.11.2 Superscripts
  • References
  • Appendix B: Spaceplane Coordinates
  • B.1 Space Shuttle Orbiter
  • B.2 USAF/NASA X-24C
  • B.3 North American X-15
  • B.4 Soviet Spaceplane Bor-4
  • B.5 Northrop HL-10 Lifting Body
  • B.6 Hermes Spaceplane
  • B.7 Institute of Space and Astronautical Sciences HIMES Spaceplane (Japan)
  • B.8 Estimated Lift Drag and Moment Data for Several Spaceplanes
  • B.9 Similarities in Hypersonic Spaceplanes
  • B.10 Nomenclature
  • B.10.1 Subscripts
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

51,11 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok