Solving Partial Differential Equation Applications with PDE2D

Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 6. September 2018
  • |
  • 224 Seiten
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-50795-6 (ISBN)
Solve engineering and scientific partial differential equation applications using the PDE2D software developed by the author

Solving Partial Differential Equation Applications with PDE2D derives and solves a range of ordinary and partial differential equation (PDE) applications. This book describes an easy-to-use, general purpose, and time-tested PDE solver developed by the author that can be applied to a wide variety of science and engineering problems. The equations studied include many time-dependent, steady-state and eigenvalue applications such as diffusion, heat conduction and convection, image processing, math finance, fluid flow, and elasticity and quantum mechanics, in one, two, and three space dimensions.

The author begins with some simple "0D" problems that give the reader an opportunity to become familiar with PDE2D before proceeding to more difficult problems. The book ends with the solution of a very difficult nonlinear problem, which requires a moving adaptive grid because the solution has sharp, moving peaks. This important book:

Describes a finite-element program, PDE2D, developed by the author over the course of 40 years
Derives the ordinary and partial differential equations, with appropriate initial and boundary conditions, for a wide variety of applications
Offers free access to the Windows version of the PDE2D software through the author's website at
Offers free access to the Linux and MacOSX versions of the PDE2D software also, for instructors who adopt the book for their course and contact the author at

Written for graduate applied mathematics or computational science classes, Solving Partial Differential Equation Applications with PDE2D offers students the opportunity to actually solve interesting engineering and scientific applications using the accessible PDE2D.
1. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 14,64 MB
978-1-119-50795-6 (9781119507956)

weitere Ausgaben werden ermittelt
Granville Sewell, PhD, is Professor in the Mathematics department at the University of Texas-El Paso, El Paso, TX. Dr. Sewell is the author of The Numerical Solution of Ordinary and Partial Differential Equations, Second Edition, and Computational Methods of Linear Algebra, Second Edition, both published by Wiley.
Preface vii

I Introduction to PDE2D 1

I.1 The Collocation and Galerkin Finite Element Methods 1

I.2 The PDE2D User Interfaces 7

I.3 Accuracy 11

I.4 Computer Time and Memory 13

I.5 Programming Hints 17

1 The Damped Spring and Pendulum Problems 21

1.1 Derivation of the Damped Spring and Pendulum Equations 21

1.2 Damped Spring and Pendulum Examples 23

1.3 Problems 24

2 Beam and Plate Bending 31

2.1 Derivation of Beam Bending Equation 31

2.2 Derivation of Plate Bending Equation 32

2.3 Beam and Plate Examples 33

2.4 Problems 34

3 Diffusion and Heat Conduction 39

3.1 Derivation of Diffusion Equation 39

3.2 Diffusion and Heat Conduction Examples 40

3.3 Problems 51

4 Pricing Options 61

4.1 Derivation of Black-Scholes Equation 61

4.2 Option Pricing Examples 65

4.3 Problems 70

5 Elasticity 75

5.1 Derivation of Elasticity Equations 75

5.2 Elasticity Examples 77

5.3 Problems 81

6 Incompressible Fluid Flow 95

6.1 Derivation of Navier-Stokes Equations 95

6.2 Stream Function and PenaltyMethod Approaches 97

6.3 Fluid Flow Examples 97

6.4 Problems 105

7 The Schroedinger and Other Eigenvalue Equations 119

7.1 The Schroedinger Equation 119

7.2 Schroedinger and Maxwell Equations Examples 119

7.3 Problems 126

8 Minimal Surface and MembraneWave Equations 137

8.1 Derivation of Minimal Surface Equation 137

8.2 Derivation of MembraneWave Equation 138

8.3 Examples 140

8.4 Problems 142

9 The KPIWave Equation 149

9.1 A Difficult Nonlinear Problem 149

9.2 Numerical Results 155

Appendix A: Formulas from Multivariate Calculus 161

Appendix B: Algorithms Used by PDE2D 163

Appendix C: Equations Solved by PDE2D 183

Appendix D: Problem 5.7 Local Solvers 193

References 205

Index 207

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

76,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen