Whole-Angle MEMS Gyroscopes

Challenges and Opportunities
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. Mai 2020
  • |
  • 176 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-44186-1 (ISBN)
 
Presents the mathematical framework, technical language, and control systems know-how needed to design, develop, and instrument micro-scale whole-angle gyroscopes

This comprehensive reference covers the technical fundamentals, mathematical framework, and common control strategies for degenerate mode gyroscopes, which are used in high-precision navigation applications. It explores various energy loss mechanisms and the effect of structural imperfections, along with requirements for continuous rate integrating gyroscope operation. It also provides information on the fabrication of MEMS whole-angle gyroscopes and the best methods of sustaining oscillations.

Whole-Angle Gyroscopes: Challenges and Opportunities begins with a brief overview of the two main types of Coriolis Vibratory Gyroscopes (CVGs): non-degenerate mode gyroscopes and degenerate mode gyroscopes. It then introduces readers to the Foucault Pendulum analogy and a review of MEMS whole angle mode gyroscope development. Chapters cover: dynamics of whole-angle coriolis vibratory gyroscopes; fabrication of whole-angle coriolis vibratory gyroscopes; energy loss mechanisms of coriolis vibratory gyroscopes; and control strategies for whole-angle coriolis vibratory gyro- scopes. The book finishes with a chapter on conventionally machined micro-machined gyroscopes, followed by one on micro-wineglass gyroscopes. In addition, the book:
* Lowers barrier to entry for aspiring scientists and engineers by providing a solid understanding of the fundamentals and control strategies of degenerate mode gyroscopes
* Organizes mode-matched mechanical gyroscopes based on three classifications: wine-glass, ring/disk, and mass spring mechanical elements
* Includes case studies on conventionally micro-machined and 3-D micro-machined gyroscopes

Whole-Angle Gyroscopes is an ideal book for researchers, scientists, engineers, and college/graduate students involved in the technology. It will also be of great benefit to engineers in control systems, MEMS production, electronics, and semi-conductors who work with inertial sensors.
weitere Ausgaben werden ermittelt
Doruk Senkal, PhD, has been working on the development of Inertial Navigation Technologies for Augmented and Virtual Reality applications at Facebook since 2018. Before joining Facebook, he was developing MEMS Inertial Sensors for mobile devices at TDK Invensense. He received his Ph.D. degree in 2015 from University of California, Irvine, with a focus on MEMS Coriolis Vibratory Gyroscopes. Dr. Senkal 's research interests, represented in over 20 international conference papers, 9 peer-reviewed journal papers, and 16 patent applications, encompass all aspects of MEMS inertial sensor development, including sensor design, device fabrication, algorithms, and control.

Andrei M. Shkel, PhD, has been on faculty at the University of California, Irvine since 2000, and served as a Program Manager in the Microsystems Technology Office of DARPA. His research interests are reflected in over 250 publications, 40 patents, and 2 books. Dr. Shkel has been on a number of editorial boards, including Editor of IEEE/ASME JMEMS and the founding chair of the IEEE Inertial Sensors. He was awarded the Office of the Secretary of Defense Medal for Exceptional Public Service in 2013, and the 2009 IEEE Sensors Council Technical Achievement Award. He is the IEEE Fellow.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Abbreviations
  • Preface
  • About the Authors
  • Part I Fundamentals of Whole-Angle Gyroscopes
  • Chapter 1 Introduction
  • 1.1 Types of Coriolis Vibratory Gyroscopes
  • 1.1.1 Nondegenerate Mode Gyroscopes
  • 1.1.2 Degenerate Mode Gyroscopes
  • 1.2 Generalized CVG Errors
  • 1.2.1 Scale Factor Errors
  • 1.2.2 Bias Errors
  • 1.2.3 Noise Processes
  • 1.2.3.1 Allan Variance
  • 1.3 Overview
  • Chapter 2 Dynamics
  • 2.1 Introduction to Whole-Angle Gyroscopes
  • 2.2 Foucault Pendulum Analogy
  • 2.2.1 Damping and Q-factor
  • 2.2.1.1 Viscous Damping
  • 2.2.1.2 Anchor Losses
  • 2.2.1.3 Material Losses
  • 2.2.1.4 Surface Losses
  • 2.2.1.5 Mode Coupling Losses
  • 2.2.1.6 Additional Dissipation Mechanisms
  • 2.2.2 Principal Axes of Elasticity and Damping
  • 2.3 Canonical Variables
  • 2.4 Effect of Structural Imperfections
  • 2.5 Challenges of Whole-Angle Gyroscopes
  • Chapter 3 Control Strategies
  • 3.1 Quadrature and Coriolis Duality
  • 3.2 Rate Gyroscope Mechanization
  • 3.2.1 Open-loop Mechanization
  • 3.2.1.1 Drive Mode Oscillator
  • 3.2.1.2 Amplitude Gain Control
  • 3.2.1.3 Phase Locked Loop/Demodulation
  • 3.2.1.4 Quadrature Cancellation
  • 3.2.2 Force-to-rebalance Mechanization
  • 3.2.2.1 Force-to-rebalance Loop
  • 3.2.2.2 Quadrature Null Loop
  • 3.3 Whole-Angle Mechanization
  • 3.3.1 Control System Overview
  • 3.3.2 Amplitude Gain Control
  • 3.3.2.1 Vector Drive
  • 3.3.2.2 Parametric Drive
  • 3.3.3 Quadrature Null Loop
  • 3.3.3.1 AC Quadrature Null
  • 3.3.3.2 DC Quadrature Null
  • 3.3.4 Force-to-rebalance and Virtual Carouseling
  • 3.4 Conclusions
  • Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures
  • Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes
  • 4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures
  • 4.1.1 Lumped Mass Systems
  • 4.1.2 Ring/Disk Systems
  • 4.1.2.1 Ring Gyroscopes
  • 4.1.2.2 Concentric Ring Systems
  • 4.1.2.3 Disk Gyroscopes
  • 4.2 2-D Micro-Machining Processes
  • 4.2.1 Traditional Silicon MEMS Process
  • 4.2.2 Integrated MEMS/CMOS Fabrication Process
  • 4.2.3 Epitaxial Silicon Encapsulation Process
  • Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes
  • 5.1 A Distributed Mass MEMS Gyroscope - Toroidal Ring Gyroscope
  • 5.1.1 Architecture
  • 5.1.1.1 Electrode Architecture
  • 5.1.2 Experimental Demonstration of the Concept
  • 5.1.2.1 Fabrication
  • 5.1.2.2 Experimental Setup
  • 5.1.2.3 Mechanical Characterization
  • 5.1.2.4 Rate Gyroscope Operation
  • 5.1.2.5 Comparison of Vector Drive and Parametric Drive
  • 5.2 A Lumped Mass MEMS Gyroscope - Dual Foucault Pendulum Gyroscope
  • 5.2.1 Architecture
  • 5.2.1.1 Electrode Architecture
  • 5.2.2 Experimental Demonstration of the Concept
  • 5.2.2.1 Fabrication
  • 5.2.2.2 Experimental Setup
  • 5.2.2.3 Mechanical Characterization
  • 5.2.2.4 Rate Gyroscope Operation
  • 5.2.2.5 Parameter Identification
  • Part III 3-D Micro-Machined Whole-Angle Gyroscope Architectures
  • Chapter 6 Overview of 3-D Shell Implementations
  • 6.1 Macro-scale Hemispherical Resonator Gyroscopes
  • 6.2 3-D Micro-Shell Fabrication Processes
  • 6.2.1 Bulk Micro-Machining Processes
  • 6.2.2 Surface-Micro-Machined Micro-Shell Resonators
  • 6.3 Transduction of 3-D Micro-Shell Resonators
  • 6.3.1 Electromagnetic Excitation
  • 6.3.2 Optomechanical Detection
  • 6.3.3 Electrostatic Transduction
  • Chapter 7 Design and Fabrication of Micro-glassblown Wineglass Resonators
  • 7.1 Design of Micro-GlassblownWineglass Resonators
  • 7.1.1 Design of Micro-Wineglass Geometry
  • 7.1.1.1 Analytical Solution
  • 7.1.1.2 Finite Element Analysis
  • 7.1.1.3 Effect of Stem Geometry on Anchor Loss
  • 7.1.2 Design for High Frequency Symmetry
  • 7.1.2.1 Frequency Symmetry Scaling Laws
  • 7.1.2.2 Stability of Micro-Glassblown Structures
  • 7.2 An Example Fabrication Process for Micro-glassblown Wineglass Resonators
  • 7.2.1 Substrate Preparation
  • 7.2.2 Wafer Bonding
  • 7.2.3 Micro-Glassblowing
  • 7.2.4 Wineglass Release
  • 7.3 Characterization of Micro-Glassblown Shells
  • 7.3.1 Surface Roughness
  • 7.3.2 Material Composition
  • Chapter 8 Transduction of Micro-Glassblown Wineglass Resonators
  • 8.1 Assembled Electrodes
  • 8.1.1 Design
  • 8.1.2 Fabrication
  • 8.1.2.1 Experimental Characterization
  • 8.2 In-plane Electrodes
  • 8.3 Fabrication
  • 8.4 Experimental Characterization
  • 8.5 Out-of-plane Electrodes
  • 8.6 Design
  • 8.7 Fabrication
  • 8.8 Experimental Characterization
  • Chapter 9 Conclusions and Future Trends
  • 9.1 Mechanical Trimming of Structural Imperfections
  • 9.2 Self-calibration
  • 9.3 Integration and Packaging
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

107,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen