Abbildung von: Bioinspired and Green Synthesis of Nanostructures - Wiley-Scrivener

Bioinspired and Green Synthesis of Nanostructures

A Sustainable Approach
Wiley-Scrivener (Verlag)
1. Auflage
Erschienen am 19. Mai 2023
448 Seiten
E-Book
PDF mit Adobe-DRM
978-1-394-17491-1 (ISBN)
173,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Adobe-DRM
E-Book Einzellizenz
Als Download verfügbar
BIOINSPIRED AND GREEN SYNTHESIS OF NANOSTRUCTURES

This unique book details various ways to synthesize advanced nanostructures using green methods, explores the design and development of sustainable advanced nanostructures, and discusses the antimicrobial and antiviral applications.

The future of the world depends on immediately investing our time and effort in advancing ideas on ways to restrict the use of hazardous chemicals, thereby arresting further environmental degradation. To achieve this goal, nanotechnology has been an indispensable arena that has extended its wings into every aspect of modernization. For example, green synthetic protocols are being extensively researched to inhibit the harmful effects of chemical residues and reduce chemical wastes. This involves the study of nanotechnology for artful engineering at the molecular level across multiple disciplines. In recent years, nanotechnology has ventured away from the confines of the laboratory and has been able to conquer new domains to help us live better lives.

Bioinspired and Green Synthesis of Nanostructures focuses on the recent developments and novel applications of bioinspired and biomimetic nanostructures as functionally advanced biomolecules with huge prospects for research, development, and engineering industries. It provides detailed coverage of the chemistry of each major class of synthesis of bioinspired nanostructures and their multiple functionalities. In addition, it reviews the new research results currently being introduced and analyzes the various green synthetic approaches for developing nanostructures, their distinctive characteristics, and their applications. The book provides readers with an understanding of the recent data, as well as various strategies for designing and developing advanced nanostructures using a greener approach.

Audience

The core audience of this book include materials scientists, nanoscientists, nanotechnologists, chemical and biological engineers, biochemists and biotechnologists. Industry process engineers and scientists working in nanomaterial synthesis will find this book extremely valuable.

Mousumi Sen, PhD, is an assistant professor in the Department of Chemistry, Amity University, India. She received her PhD in bioinorganic chemistry from the Indian Institute of Technology, Delhi, India. Her research interest is focused on the development of biotechnological processes for bioprocessing and conversion of waste to generate bioenergy, biofuels, and biobased chemicals. Her research focus also includes the development of effective and sustainable methods for the removal of inorganic and organic pollutants from polluted water, food chemistry, heavy metal detoxification, composites/nanocomposites, water research, bio-inorganic chemistry, and nanochemistry. She has published numerous peer-reviewed research articles in journals of high repute as well as edited and authored books and book chapters.

Monalisa Mukherjee, PhD, is the Director of the Amity Institute of Click Chemistry Research and Studies and a professor at the Amity Institute of Biotechnology, Noida, India. She received her PhD from the Indian Institute of Technology, Delhi, India in 2006. She is also a recipient of the UK-India Distinguished Visiting Scientist Award in 2011 and was admitted as a fellow of the Royal Society of Chemistry in 2021.

  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Green Synthesis: Introduction, Mechanism, and Effective Parameters
  • 1.1 Introduction
  • 1.2 What Are Nanoparticles?
  • 1.3 Types of Nanoparticles
  • 1.3.1 Inorganic Nanoparticle
  • 1.3.1.1 Green Synthesis of Silver (Ag) Nanoparticles
  • 1.3.1.2 Green Synthesis of Gold (Au) Nanoparticles
  • 1.3.1.3 Green Synthesis of Copper (Cu) Nanoparticles
  • 1.3.1.4 Iron Oxide Nanoparticles
  • 1.3.2 Organic Nanoparticles
  • 1.3.2.1 Liposomes
  • 1.3.2.2 Micelles
  • 1.3.2.3 Dendrimers
  • 1.4 Approaches
  • 1.5 Conclusion
  • References
  • Chapter 2 Greener Nanoscience: Proactive Approach to Advancing Nanotechnology Applications and Reducing Its Negative Consequences
  • 2.1 Introduction
  • 2.2 Why Do We Need Green Nanoscience Approaches?
  • 2.3 Green Nanotechnology
  • 2.4 Green Synthesis of Nanomaterials
  • 2.5 Advantages of Green Nanoscience
  • 2.5.1 Green Nanoscience in Industries
  • 2.5.2 Green Nanoscience in Automobiles
  • 2.5.3 Green Nanoelectronics
  • 2.5.4 Green Nanoscience in Food and Agriculture
  • 2.5.5 Green Nanoscience in Medicines
  • 2.6 Conclusion
  • References
  • Chapter 3 Optimization of the Process Parameters to Develop Green-Synthesized Nanostructures with a Special Interest in Cancer Theranostics
  • 3.1 Introduction
  • 3.1.1 Conventional Techniques in Nanoparticle Synthesis
  • 3.1.2 Green Nanotechnology
  • 3.2 Mechanism Underlying Green Synthesis
  • 3.3 Green Synthesized Nanoparticles in Cancer Theranostics
  • 3.4 Optimizing the Synthesis and Subsequent Characterizations
  • 3.4.1 Approaches to Achieve Optimization
  • 3.4.2 Characterization of Nanoparticles
  • Acknowledgment
  • References
  • Chapter 4 Sustainability: An Emerging Design Criterion in Nanoparticles Synthesis and Applications
  • 4.1 Introduction
  • 4.2 Biotemplates
  • 4.2.1 Plant-Based Biotemplates
  • 4.2.2 Microorganism-Based Biotemplates
  • 4.2.2.1 Bacteria
  • 4.2.2.2 Fungi
  • 4.2.2.3 Yeast
  • 4.2.2.4 Algae
  • 4.3 Synthesis Routes
  • 4.3.1 Effect of pH
  • 4.3.2 Effect of Temperature
  • 4.3.3 Effect of Biomolecules
  • 4.3.3.1 Plant-Based
  • 4.3.3.2 Microorganism-Based
  • 4.4 Applications
  • 4.4.1 Biomedical Application
  • 4.4.1.1 Antimicrobial Activity
  • 4.4.1.2 Biomedication
  • 4.4.1.3 Vaccines
  • 4.4.1.4 Antidiabetic
  • 4.4.1.5 Diagnostic Applications
  • 4.4.2 Environmental Application
  • 4.4.2.1 Environmental Remediation
  • 4.4.2.2 Catalytic Removal of Textile Dyes
  • 4.4.2.3 Wastewater Treatment
  • 4.4.2.4 Agriculture
  • 4.5 Conclusion and Outlook
  • References
  • Chapter 5 Green Conversion Methods to Prepare Nanoparticle
  • 5.0 Introduction
  • 5.1 Bacteria
  • 5.2 Fungi
  • 5.3 Yeast
  • 5.4 Viruses
  • 5.5 Algae
  • 5.6 Plants
  • 5.7 Conclusion and Perspectives
  • References
  • Chapter 6 Bioinspired Green Synthesis of Nanomaterials From Algae
  • 6.1 Introduction
  • 6.2 Algal System-Mediated Nanomaterial Synthesis
  • 6.3 Factors Affecting the Green Synthesis of Nanomaterials
  • 6.3.1 Light
  • 6.3.2 Temperature
  • 6.3.3 Incubation Period
  • 6.3.4 pH
  • 6.3.5 Precursor Concentration and Bioactive Catalyst
  • 6.4 Applications of the Green Synthesized Nanomaterials
  • 6.4.1 Antimicrobial Agents
  • 6.4.2 Anticancerous
  • 6.4.3 Biosensing
  • 6.4.4 Bioremediation
  • 6.5 Future Perspectives
  • 6.6 Conclusion
  • References
  • Chapter 7 Interactions of Nanoparticles with Plants: Accumulation and Effects
  • 7.1 Introduction
  • 7.2 Uptake and Translocation of Nanoparticles and Nanocarriers in Plants
  • 7.3 Nanoparticle-Mediated Sensing and Biosensing in Plants
  • 7.4 Tolerance Versus Toxicity of Nanoparticles in Plants
  • 7.5 Nanoparticle-Mediated Delivery of Fertilizers, Pesticides, Other Agrochemicals in Plants
  • 7.6 Nanoparticle-Mediated Non-Viral Gene Delivery in Plants
  • 7.7 Conclusions
  • Acknowledgments
  • References
  • Chapter 8 A Clean Nano-Era: Green Synthesis and Its Progressive Applications
  • 8.1 Introduction
  • 8.2 Green Synthetic Approaches
  • 8.2.1 Microorganism-Induced Synthesis of Nanoparticles
  • 8.2.2 Biosynthesis of Nanoparticles Using Bacteria
  • 8.2.3 Biosynthesis of Nanoparticles Using Fungi
  • 8.2.4 Biosynthesis of Nanoparticles Using Actinomycetes
  • 8.2.5 Biosynthesis of Nanoparticles Using Algae
  • 8.2.6 Plant Extracts for Biosynthesis of Nanoparticles
  • 8.3 Nanoparticles Obtained Using Green Synthetic Approaches and Their Applications
  • 8.3.1 Synthesis of Silver (Ag) and Gold (Au)
  • 8.3.2 Synthesis of Palladium (Pd) Nanoparticles
  • 8.3.3 Synthesis of Copper (Cu) Nanoparticles
  • 8.3.4 Synthesis of Silver Oxide (Ag2O) Nanoparticles
  • 8.3.5 Synthesis of Titanium Dioxide (TiO2) Nanoparticles
  • 8.3.6 Synthesis of Zinc Oxide (ZnO) Nanoparticles
  • 8.3.7 Synthesis of Iron Oxide Nanoparticles
  • 8.4 Conclusion
  • References
  • Chapter 9 A Decade of Biomimetic and Bioinspired Nanostructures: Innovation Upheaval and Implementation
  • 9.1 Introduction
  • 9.2 Bioinspired Nanostructures
  • 9.2.1 Materials Inspired by Structural Properties of Natural Organism
  • 9.3 Biomimetic Structures
  • 9.4 Biomimetic Synthesis Processes and Products
  • 9.5 Application of Bioinspired and Biomimetic Structure
  • 9.6 Conclusion
  • 9.7 Future Outlook
  • Acknowledgments
  • References
  • Chapter 10 A Feasibility Study of the Bioinspired Green Manufacturing of Nanocomposite Materials
  • 10.1 Introduction
  • 10.2 Biopolymers
  • 10.2.1 Cellulose
  • 10.2.2 Chitosan
  • 10.2.3 Starch
  • 10.2.4 Chitin
  • 10.2.5 Polyhydroxyalkanoates (PHA)
  • 10.2.6 Polylactic Acid (PLA)
  • 10.3 Different Types of Bioinspired Nanocomposites
  • 10.3.1 Polymer-HAp Nanoparticle Composites
  • 10.3.2 Nanowhisker-Based Bionanocomposites
  • 10.3.3 Clay-Polymer Nanocomposites
  • 10.4 Fabrication of Bionanocomposites
  • 10.4.1 Electrospinning
  • 10.4.2 Solvent Casting
  • 10.4.3 Melt Moulding
  • 10.4.4 Freeze Drying
  • 10.4.5 3D Printing
  • 10.4.6 Ball Milling Method
  • 10.4.7 Microwave-Assisted Method for Bionanocomposite Preparation
  • 10.4.8 Ultraviolet Irradiation Method
  • 10.5 Application of Bionanocomposites
  • 10.5.1 Orthopedics
  • 10.5.2 Dental Applications
  • 10.5.3 Tissue Engineering
  • 10.6 Conclusion
  • References
  • Chapter 11 Bioinspiration as Tools for the Design of Innovative Materials and Systems Bioinspired Piezoelectric Materials: Design, Synthesis, and Biomedical Applications
  • 11.1 Bioinspiration and Sophisticated Materials Design
  • 11.1.1 Piezoelectricity in Natural Bulk Materials
  • 11.1.2 Piezoelectricity in Proteins
  • 11.1.3 Piezoelectric Ultra-Short Peptides
  • 11.1.4 Single Amino Acid Assembly and Coassembly-Based Piezoelectric Materials
  • 11.2 Biomedical Applications
  • 11.2.1 Piezoelectric Sensors
  • 11.2.2 Tissue Regeneration
  • 11.3 Conclusion and Future Perspectives
  • Acknowledgment
  • References
  • Chapter 12 Protein Cages and their Potential Application in Therapeutics
  • 12.1 Introduction
  • 12.2 Different Methods of Cage Modifications and Cargo Loading
  • 12.3 Applications of Protein Cages in Biotechnology and Therapeutics
  • 12.3.1 Protein Cage as Targeted Delivery Vehicles for Therapeutic Protein
  • 12.3.2 Protein Cage-Based Encapsulation and Targeting of Anticancer Drugs
  • 12.3.3 Protein Cage-Based Immune-Therapy
  • 12.4 Future Perspective
  • 12.5 Conclusion
  • Acknowledgment
  • References
  • Chapter 13 Green Nanostructures: Biomedical Applications and Toxicity Studies
  • 13.1 Introduction
  • 13.2 Moving Toward Green Nanostructures
  • 13.3 Methods of Nanoparticle Synthesis
  • 13.4 Plant-Mediated Synthesis of Green Nanostructures
  • 13.4.1 Silver Nanoparticles
  • 13.4.2 Gold Nanoparticles
  • 13.4.3 Zinc Oxide Nanoparticles
  • 13.4.4 Selenium Nanoparticles
  • 13.5 Microbe-Based Synthesis
  • 13.5.1 Bacteria-Mediated Synthesis of NPs
  • 13.5.2 Fungus-Mediated Synthesis of NPs
  • 13.5.3 Actinomycete-Mediated Synthesis of NPs
  • 13.6 Toxicity of Nanostructures
  • 13.7 Conclusion
  • References
  • Chapter 14 Future Challenges for Designing Industry-Relevant Bioinspired Materials
  • 14.1 Introduction
  • 14.2 Bioinspired Materials
  • 14.3 Applications of Bioinspired Materials and Their Industrial Relevance
  • 14.4 Bioinspired Materials in Optics
  • 14.4.1 Applications in Optics
  • 14.4.2 Bioinspired Materials in Energy
  • 14.4.3 Applications in Energy
  • 14.4.4 Bioinspired Materials in Medicine
  • 14.5 Applications in Medicine
  • 14.6 Future Challenges for Industrial Relevance
  • 14.7 Optics-Specific Challenges
  • 14.8 Energy-Specific Challenges
  • 14.9 Medicine-Specific Challenges
  • 14.10 Conclusion
  • References
  • Chapter 15 Biomimetic and Bioinspired Nanostructures: Recent Developments and Applications
  • 15.1 Introduction
  • 15.2 Designing Bioinspired and Bioimitating Structures and Pathways
  • 15.3 Nanobiomimicry-Confluence of Nanotechnology and Bioengineering
  • 15.4 Biofunctionalization of Inorganic Nanoparticles
  • 15.4.1 Strategies to Develop Biofunctionalized Nanoparticles
  • 15.4.2 Fate of Biofunctionalized Nanoparticles
  • 15.4.3 Biofunctionalization Nanoparticles with Different Organic Compounds
  • 15.4.3.1 Carbohydrates
  • 15.4.3.2 Nucleic Acid
  • 15.4.3.3 Peptides
  • 15.4.3.4 DNA
  • 15.4.3.5 Antibody
  • 15.4.3.6 Enzyme
  • 15.4.3.7 Stability of Biofunctionalized Nanoparticles
  • 15.4.3.8 Applications of Biofunctionalized Nanoparticles
  • 15.5 Multifarious Applications of Biomimicked/Bioinspired Novel Nanomaterials
  • 15.5.1 Implementation of Nanobiomimicry for Sustainable Development
  • 15.5.2 Bioinspired Nanomaterials for Biomedical and Therapeutic Applications
  • 15.5.3 Nanomaterial-Based Biosensors for Environmental Monitoring
  • 15.5.3.1 Nanosensor Design
  • 15.5.3.2 Operation of a Biomimetic Sensor
  • 15.5.3.3 Applications in Environmental Monitoring
  • 15.5.4 Biomimetic Nanostructure for Advancement of Agriculture and Bioprocess Engineering
  • 15.5.5 Nanobiomimetics as the Future of Food Process Engineering
  • 15.6 Emerging Trends and Future Developments in Bioinspired Nanotechnology
  • 15.7 Conclusion
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten. 

Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer  E-Book Hilfe.