Urban DC Microgrid

Intelligent Control and Power Flow Optimization
 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 10. Mai 2016
  • |
  • 306 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803787-4 (ISBN)
 

Urban DC Microgrid: Intelligent Control and Power Flow Optimization focuses on microgrids for urban areas, particularly associated with building-integrated photovoltaic and renewable sources. This book describes the most important problems of DC microgrid application, with grid-connected and off-grid operating modes, aiming to supply DC building distribution networks.

The book considers direct current (DC) microgrid to supply DC building distribution networks for positive energy buildings; dynamic interactions with the utility grid based on communication with the smart grid; supervisory control systems; and energy management. The global power system is exposed and the DC microgrid system is presented and analyzed with results and discussion, highlighting both the advantages and limitations of the concept. Coverage at the system level of microgrid control as well as the various technical aspects of the power system components make this a book interesting to academic researchers, industrial energy researchers, electrical power and power system professionals.


  • Provides a strong overview of microgrid modelling
  • Describes the most important problems of DC microgrid application, with grid-connected and off-grid operating modes, aiming to supply DC building distribution networks
  • Offers experimental problem examples and results
  • Includes supervisory control and energy management


Manuela SECHILARIU received the Dipl.Ing. degree in Electrical Engineering in 1986 from Institute Polytechnic Iasi, Romania, and the PhD degree in Electrical Engineering and Automatic in 1993 from Université d'Angers, France. Since 2013 she obtained the HDR degree in Electrical Engineering from Université de Technologie de Compiègne, France, the highest French academic title, and then the qualification required for Full Professor. The obtaining of HDR, accreditation to supervise research, confers official recognition of the high scientific level and capability to optimally manage a research strategy in a sufficiently wide scientific field (Smart Grid and Microgrids). From 1989 she was an Assistant Professor with Institute Polytechnic Iasi, Romania, and from 1994, she was an Associate Professor with Université d'Angers, France. In 2002, she joined the Université de Technologie de Compiègne, France.
Manuela SECHILARIU has over 20 years of research experience. Her first research topic focused on the modeling and simulation of static converters by Petri Nets which quickly led to the study of hybrid dynamical systems. Contributions were made to the definition, classification and optimal control of these systems. Since 2006 she has directed the research in the study of decentralized renewable electricity production, urban microgrids and energy management systems. She has delivered several invited lectures and has published more than 60 refereed scientific and technical papers in international journals and conferences, with over 350 citations (SCOPUS), on topics such as renewable energy systems, including microgrids, photovoltaic-powered systems, economic dispatch optimization, supervisory control, and Petri Nets and Stateflow modeling.
Her research has been funded by agencies and sponsors including the CNRS (National Center for Scientific Research), ADEME (The French Environment and Energy Management Agency), FEDER (European Fund for Regional Economic Development), and CRP (Picardie Regional Council). She has managed several national research projects and industrial research contracts.
She is a member of several professional bodies and academic boards, including the IEEE (Institute of Electrical and Electronics Engineers), the French Research Group GDR SEEDS (Electric Power Systems in their Corporate Social Dimension), and the 63rd section of the French National Council of Universities. Manuela SECHILARIU has reviewed projects of various scientific national research organizations (French and Czech) and articles for many international journals (active reviewer for several IEEE Transactions and Elsevier Journals) and conferences. She has directed and co-supervised many dozens of Ms.Eng. and PhD theses dissertations. She has participated in many academic councils and committees either as a member or as a deputy member of the selection committee for candidates for Associate Professor position. During last ten academic years she served as director of Dipl.Ing. degree major 'Systems and networks for built environment" and then as member of PhD School board.
Manuela SECHILARIU's broad research interests focus on the power and energy systems, smart grid, microgrids, distributed generation, photovoltaic-powered systems, energy management, optimization, intelligent control, and Petri Nets modeling.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 9,90 MB
978-0-12-803787-4 (9780128037874)
0128037873 (0128037873)
weitere Ausgaben werden ermittelt
  • Front Cover
  • URBAN DC MICROGRID
  • URBAN DC MICROGRID
  • Copyright
  • CONTENTS
  • AUTHOR BIOGRAPHIES
  • BIOGRAPHY OF MANUELA SECHILARIU
  • Affiliations and Expertise
  • BIOGRAPHY OF FABRICE LOCMENT
  • Affiliations and Expertise
  • FOREWORD
  • ACKNOWLEDGMENTS
  • ABBREVIATIONS
  • GENERAL INTRODUCTION
  • 1. CONTEXT AND MOTIVATION
  • 2. BOOK OVERVIEW
  • 3. BOOK CHAPTER ORGANIZATION
  • 1 - Connecting and Integrating Variable Renewable Electricity in Utility Grid
  • 1. SMART GRID-SOLUTION FOR TRADITIONAL UTILITY GRID ISSUES
  • 2. MICROGRIDS
  • 2.1 Alternating and Direct Current Microgrid
  • 2.2 Research Issues in Microgrids
  • 2.2.1 Control
  • 2.2.2 Protection
  • 2.2.3 Energy Management
  • 3. URBAN DIRECT CURRENT MICROGRID
  • 3.1 Smart Grid, Smart City, and Smart Building
  • 3.2 Smart Microgrids in Urban Areas
  • 3.2.1 General Overview
  • 3.2.2 Direct Current Microgrid for a Low-Voltage Direct Current Distribution Network
  • Microgrid Global Power Transmission Efficiency: Alternating Current Bus versus Direct Current Bus
  • Microgrid Global Energy Efficiency: Alternating Current Bus versus Direct Current Bus
  • 3.2.3 Dynamic Interactions Between the Microgrid and the Smart Grid
  • 3.3 Urban Energy Management Strategies
  • 3.4 Experimental Platform for Direct Current Microgrids
  • 4. CONCLUSIONS
  • REFERENCES
  • 2 - Photovoltaic Source Modeling and Control
  • 1. PHOTOVOLTAIC SOURCE MODELING
  • 1.1 Photovoltaic Cell
  • 1.1.1 Operating Principle of a Photovoltaic Cell
  • 1.1.2 Electrical Characteristics of a Photovoltaic Cell
  • 1.2 Photovoltaic Source Modeling
  • 1.2.1 Photovoltaic Power Prediction
  • 1.2.2 Equivalent Circuit Photovoltaic Model
  • 1.2.3 Linear Power Photovoltaic Model
  • 1.2.4 Purely Experimental Photovoltaic Model
  • Test Bench Description
  • Process Measurements and Data Acquisition
  • 1.3 Experimental Comparison of Photovoltaic Power Models
  • 1.4 Photovoltaic System Efficiency and Optimal Operating Points
  • 2. MAXIMUM POWER POINT TRACKING
  • 2.1 Maximum Power Point Tracking Method Overview
  • 2.2 Fixed-Step Size Maximum Power Point Tracking Algorithms
  • 2.2.1 Perturb and Observe
  • 2.2.2 Incremental Conductance
  • 2.2.3 Comparison and Discussion on Perturb and Observe and Incremental Conductance
  • 2.3 Variable-Step Size Maximum Power Point Tracking Algorithms
  • 2.3.1 Improvement of the Perturb and Observe Method
  • 2.3.2 Fuzzy Logic Maximum Power Point Tracking Approach
  • Fuzzification
  • Fuzzy Reasoning
  • Defuzzification
  • 2.4 Experimental Comparison Between Different Maximum Power Point Tracking Algorithms
  • 2.4.1 Maximum Power Point Tracking Experimental System Description
  • 2.4.2 Maximum Power Point Tracking Experimental Results Analysis and Discussions
  • 3. PHOTOVOLTAIC-CONSTRAINED PRODUCTION CONTROL
  • 3.1 Photovoltaic Power-Constrained Production Strategy
  • 3.2 Photovoltaic-Constrained Power Control
  • 3.3 Experimental Results
  • 4. CONCLUSIONS
  • REFERENCES
  • 3 - Backup Power Resources for Microgrid
  • 1. DIFFERENT BACKUP RESOURCES FOR DIFFERENT OPERATING MODES
  • 1.1 Electrochemical Battery and Capacitor
  • 1.2 Fuel Cell
  • 1.3 Microturbines
  • 2. LEAD-ACID STORAGE RESOURCE
  • 2.1 Characteristics of Electrochemical Storage
  • 2.2 Operating Principle of a Lead-Acid Battery
  • 2.2.1 Discharge-Charge
  • 2.2.2 Others Electrochemical Reactions
  • 2.2.3 Manufacturing Technologies
  • 2.3 Dynamic Phenomena of a Lead-Acid Battery
  • 2.4 Modeling of Lead-Acid Battery
  • 2.4.1 Battery Static Modeling
  • 2.4.2 Battery Dynamic Modeling
  • 2.4.3 Purely Experimental Battery Model
  • 2.5 Experimental Evaluation of Lead-Acid Battery Model
  • 3. DIESEL GENERATORS
  • 3.1 Characteristics of Diesel Generators
  • 3.2 Operating Principle of a Diesel Generator
  • 3.3 Operating Cost Analysis of a Diesel Generator
  • 4. UTILITY GRID CONNECTION
  • 4.1 Phase-Locked Loop System Control
  • 4.2 Experimental Evaluation of the Phase-Locked Loop Implementation
  • 5. CONCLUSIONS
  • REFERENCES
  • 4 - Direct Current Microgrid Power Modeling and Control
  • 1. INTRODUCTION
  • 2. FUNCTIONS OF THE POWER SYSTEM CONTROL
  • 2.1 Power Balancing Principle
  • 2.2 Smart Grid Interaction
  • 3. DIRECT CURRENT MICROGRID POWER SYSTEM MODELING CONSIDERING CONSTRAINTS
  • 3.1 Introduction to Petri Net Modeling
  • 3.2 Smart Grid Interaction Modeling
  • 3.3 Grid-Operating Mode Modeling
  • 3.4 Storage Operating Mode Modeling
  • 3.5 Photovoltaic Operating Mode Modeling
  • 3.6 Diesel Generator Operating Mode Modeling
  • 3.7 Load Operating Mode Modeling
  • 3.8 Direct Current Microgrid Power System Global Behavior by Interpreted Petri Net Modeling
  • 4. DIRECT CURRENT MICROGRID POWER SYSTEM CONTROL
  • 4.1 Power System Control for Grid-Connected Mode
  • 4.1.1 Simple Strategy for Grid-Connected Control Algorithm
  • 4.1.2 Experimental Tests to Evaluate the Grid-Connected Mode
  • 4.2 Power System Control for Off-Grid Mode
  • 4.2.1 Simple Strategy for Off-Grid Control Algorithm
  • 4.2.2 Experimental Test to Evaluate the Off-Grid Mode
  • 5. CONCLUSIONS
  • REFERENCES
  • 5 - Direct Current Microgrid Supervisory System Design
  • 1. MULTILAYER SUPERVISORY DESIGN OVERVIEW
  • 2. HUMAN-MACHINE INTERFACE
  • 3. PREDICTION LAYER
  • 3.1 Photovoltaic Power Prediction
  • 3.2 Load Power Prediction
  • 4. ENERGY MANAGEMENT LAYER
  • 4.1 Energy Cost Optimization Problem Formulation
  • 4.1.1 Grid-Connected Mode
  • 4.1.2 Off-Grid Mode
  • 4.2 Solving the Problem
  • 4.3 Interface for Operation Layer
  • 5. OPERATION LAYER
  • 5.1 Control Algorithm for Grid-Connected Mode
  • 5.2 Control Algorithm for Off-Grid Mode
  • 6. EVALUATION OF THE SUPERVISORY SYSTEM BY SIMULATION
  • 6.1 Simulation Results for Grid-Connected Mode
  • 6.1.1 Power Flow Simulation Controlled by KD(t)
  • 6.1.2 Power Flow Simulation Controlled by Constant KD
  • 6.1.3 Comparison and Discussion
  • 6.2 Simulation Results for Off-Grid Mode
  • 6.2.1 Power Flow Simulation Controlled by KD(t)
  • 6.2.2 Comparison and Discussion
  • 7. CONCLUSIONS
  • REFERENCES
  • 6 - Experimental Evaluation of Urban Direct Current Microgrid
  • 1. INTRODUCTION
  • 2. CONSIDERATIONS ON MULTILAYER SUPERVISORY COMMUNICATION
  • 3. CONSIDERATIONS ON POWER CONTROL ALGORITHMS IMPLEMENTATION
  • 4. DIRECT CURRENT MICROGRID OPERATING IN GRID-CONNECTED MODE
  • 4.1 Experimental Test Description for Grid-Connected Mode
  • 4.1.1 Test 1 for Grid-Connected Mode
  • 4.1.2 Test 2 for Grid-Connected Mode
  • 4.1.3 Test 3 for Grid-Connected Mode
  • 4.2 Results Analysis and Discussions for Grid-Connected Mode
  • 5. DIRECT CURRENT MICROGRID OPERATING IN OFF-GRID MODE
  • 5.1 Experimental Test Description for Off-Grid Mode
  • 5.1.1 Test 1 for Off-Grid Mode
  • 5.1.2 Test 2 for Off-Grid Mode
  • 5.1.3 Test 3 for Off-Grid Mode
  • 5.2 Results Analysis and Discussions for Off-Grid Mode
  • 6. CONCLUSIONS
  • REFERENCES
  • General Conclusions, Future Challenges, and Perspectives
  • 1. GENERAL CONCLUSIONS
  • 1.1 Urban Direct Current Microgrid Conclusions
  • 1.2 General Conclusions on Research Approach
  • 2. FUTURE CHALLENGES
  • 2.1 Works in Progress
  • 2.2 Mid-Term Objectives
  • 3. PERSPECTIVES
  • 3.1 Intelligent Control and Advanced Power Management of the Urban Microgrid
  • 3.2 Other Renewable Energy Sources for the Multisource System
  • 3.3 Living Laboratory for Real-Scale Experimental Demonstration
  • INDEX
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

85,62 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok