Advances in Heterocyclic Chemistry

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 12. August 2015
  • |
  • 386 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-802874-2 (ISBN)
 

Advances in Heterocyclic Chemistry is the definitive series in the field-one of great importance to organic chemists, polymer chemists, and many biological scientists. Because biology and organic chemistry increasingly intersect, the associated nomenclature also is being used more frequently in explanations. Written by established authorities in the field from around the world, this comprehensive review combines descriptive synthetic chemistry and mechanistic insight to yield an understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds.


  • Considered the definitive serial in the field of heterocyclic chemistry
  • Serves as the go-to reference for organic chemists, polymer chemists, and many biological scientists
  • Provides the latest comprehensive reviews written by established authorities in the field
  • Combines descriptive synthetic chemistry and mechanistic insight to enhance understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds
0065-2725
  • Englisch
  • USA
Elsevier Science
  • 13,87 MB
978-0-12-802874-2 (9780128028742)
0128028742 (0128028742)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Heterocyclic Chemistry
  • Editorial Advisory Board
  • Copyright
  • Contents
  • Contributors
  • Preface
  • The Larock Reaction in the Synthesis of Heterocyclic Compounds
  • 1. Introduction
  • 2. Mechanism of Larock Heteroannulation
  • 2.1 Homogeneous Catalyst
  • 2.2 Heterogeneous Catalyst
  • 2.3 Phosphine-Free Pseudothiourea Palladium(II)
  • 2.4 Stabilized Palladium Colloid
  • 2.5 Silicon-Based Cross-Coupling Reactions
  • 2.6 N-Heterocyclic Carbene-Pd Complexes
  • 3. Larock Reactions in the Solid Phase
  • 3.1 Synthesis of Trisubstituted Indoles on a Solid Phase
  • 3.2 Larock Indole Synthesis Using Immobilized Palladium Complexes
  • 4. Polyheterocyclic Compounds by Larock Reaction
  • 4.1 Isoquinolines and Pyridines by Iminoannulation of Internal Alkyne
  • 4.2 Isocoumarins and a-pyrones
  • 4.3 Pyrrolo[2,3-b]pyridines
  • 4.4 Pyrrolo[3,2-c]quinolones
  • 4.5 Thieno[3,2-e]indoles
  • 4.6 1,6-Dihydropyrrolo[2,3-g]indazoles
  • 4.7 d-Carbolines
  • 5. Synthesis of Natural Compounds
  • 5.1 Tryptophan-derived Alkaloids
  • 5.2 Synthesis of Complestatins
  • 5.3 Substituted Glycines and Homotryptophan Derivatives
  • 5.4 ß-Carboline-Containing Alkaloids
  • 5.5 Synthesis of Terreusinone
  • 5.6 Synthesis of Ibogaine
  • 5.7 Synthesis of Dictyodendrins
  • 5.8 Synthesis of Natural Products Containing the Tryptamine-HPI Bond
  • 5.9 Larock Reactions in Drug Discovery
  • 6. Heteroannulation with Substrates Other than Alkynes
  • 6.1 Heteroannulation of 1,3-Dienes
  • 6.2 Heteroannulation of Allenes
  • 7. Conclusions
  • Acknowledgments
  • References
  • Helical Phosphorus Derivatives: Synthesis and Applications
  • 1. Introduction: Helical Structures
  • 2. Primary Helical Molecules
  • 2.1 Phosphorus Containing Helicenes
  • 2.1.1 Helicene-Based Phosphine Ligands
  • 2.1.2 Helicene-Based Phosphite Ligands
  • 2.1.3 Helicene-Based Phosphine Oxide Ligands
  • 2.1.4 Helicene-Based Phosphole Ligands
  • 2.2 Other Phosphorus Helical Derivatives
  • 2.2.1 Ortho-Substituted Triarylphosphines
  • 2.2.2 Polycyclic Propellers
  • 2.2.3 Spirocyclic Phosphorus Derivatives
  • 2.2.4 Highly Fused and Distorted Phosphorus Heterocycles
  • 3. Secondary Helical Phosphorus Assemblies
  • 3.1 Helical Organic Frameworks Embedding Phosphorus Atoms
  • 3.1.1 Helical H-Bond-Structured Organic Frameworks
  • 3.1.2 Helical Metal Organic Frameworks
  • 3.2 Helical Polymers Embedding Phosphorus Atoms
  • 3.2.1 Phosphazene Polymers
  • 3.2.2 Phosphino-Quinoxaline-Based Polymers
  • 4. Conclusion
  • List of Abbreviations
  • References
  • Recent Advances in the Chemistry of 1,2,4-OxadiazolesaaDedicated to Professor Nicolò Vivona on the occasion of his 75th bir ...
  • 1. Introduction
  • 1.1 Historical Remarks
  • 1.2 Classical 1,2,4-Oxadiazole Synthesis
  • 1.3 Reactive Sites in the 1,2,4-Oxadiazole Ring
  • 2. Modern 1,2,4-Oxadiazole Synthesis
  • 3. 1,2,4-Oxadiazoles as Reagents
  • 3.1 Ground State Rearrangements of 1,2,4-Oxadiazoles
  • 3.2 Excited-State Rearrangements of 1,2,4-Oxadiazoles
  • 4. 1,2,4-Oxadiazoles in Materials Chemistry
  • 4.1 Liquid Crystals
  • 4.2 Functional Salts
  • 4.3 Sensors
  • 4.4 Oxygen Friendly Media
  • 4.5 Light-Emitting Materials
  • 4.6 Energetic Materials
  • 4.7 Miscellaneous Properties
  • 5. Bioactive 1,2,4-Oxadiazoles
  • 5.1 Antimicrobial Agents
  • 5.2 Antitumor Agents
  • 5.3 Alzheimer's Disease
  • 5.4 Read-through Promoters
  • 5.5 Miscellaneous Properties
  • 6. Perspective on 1,2,4-Oxadiazoles Chemistry and Applications
  • Acknowledgments
  • References
  • Substituent Effects in Heterocyclic Systems
  • 1. Introduction
  • 2. Nitrogen-Containing Heterocyclic Systems
  • 2.1 Five-Membered Rings
  • 2.1.1 Pyrrole, Diazoles, and Triazoles
  • 2.1.2 Tetrazoles
  • 2.2 Six-Membered Rings
  • 2.3 Polycyclic Systems
  • 2.4 DNA/RNA Bases and Their Analogs
  • 3. Systems with Oxygen, Sulfur, and Other Heteroatoms
  • 3.1 Five-Membered Rings
  • 3.2 Six-Membered Rings
  • 3.3 Polycyclic Systems
  • 4. Systems with Various Heteroatoms
  • 5. Conclusions
  • List of Abbreviations
  • Acknowledgments
  • References
  • The Literature of Heterocyclic Chemistry, Part XIII, 2012-2013
  • 1. Introduction
  • 2. General Sources and Topics
  • 2.1 General Books and Reviews
  • 2.1.1 Textbooks and Handbooks
  • 2.1.2 Annual Reports
  • 2.1.2.1 Summarized Specialized Reports Devoted to Basic Series of Heterocycles
  • 2.1.2.2 Reports Devoted to Individual Problems
  • 2.1.3 Specialized Reports Devoted to Several Recent Years
  • 2.1.4 History of Heterocyclic Chemistry, Biographies
  • 2.1.5 Bibliography of Monographs and Reviews
  • 2.2 General Topics by Reaction Type
  • 2.2.1 General Sources and Topics
  • 2.2.2 Structure and Stereochemistry
  • 2.2.2.1 Theoretical Aspects
  • 2.2.2.2 Molecular Dimensions
  • 2.2.2.3 Stereochemical Aspects
  • 2.2.2.4 Betaines and other Unusual Structures
  • 2.2.3 Reactivity
  • 2.2.3.1 General Topics
  • 2.2.3.2 Reactions with Electrophiles and Oxidants
  • 2.2.3.3 Reactions with Nucleophiles and Reducing Agents
  • 2.2.3.4 Reactions toward Free Radicals, Carbenes, etc.
  • 2.2.3.5 Cross-Coupling and Related Reactions
  • 2.2.3.6 Heterocycles as Intermediates in Organic Synthesis
  • 2.2.3.7 Organocatalysts
  • 2.2.4 Synthesis
  • 2.2.4.1 General Topics and Nonconventional Synthetic Methodologies
  • 2.2.4.2 Synthetic Strategies and Individual Methods
  • 2.2.4.2.1 General Problems
  • 2.2.4.2.2 Synthetic Application of Photoreactions
  • 2.2.4.2.3 Synthetic Application of Alternative Energy Input
  • 2.2.4.2.4 Synthetic Application of Metal-Catalyzed Reactions
  • 2.2.4.2.5 Synthesis of Heterocycles via Cycloaddition Reactions
  • 2.2.4.2.6 Synthesis of Heterocycles via Multicomponent Reactions
  • 2.2.4.2.7 Miscellaneous Methods
  • 2.2.4.3 Versatile Synthons and Specific Reagents
  • 2.2.4.4 Ring Synthesis from Nonheterocyclic Compounds
  • 2.2.4.5 Syntheses by Transformation of Heterocycles
  • 2.2.5 Properties and Applications (Except Drugs and Pesticides)
  • 2.2.5.1 Dyes and Intermediates
  • 2.2.5.2 Substances with Luminescent and Related Properties
  • 2.2.5.3 Organic Conductors and Photovoltaics
  • 2.2.5.4 Coordination Compounds
  • 2.2.5.5 Polymers
  • 2.2.5.6 Ionic Liquids
  • 2.2.5.7 Miscellaneous
  • 2.3 Specialized Heterocycles
  • 2.3.1 Nitrogen Heterocycles (Except Alkaloids)
  • 2.3.2 Oxygen Heterocycles
  • 2.3.3 Sulfur Heterocycles
  • 2.4 Natural and Synthetic Biologically-Active Heterocycles
  • 2.4.1 General Sources and Topics
  • 2.4.1.1 Biological Functions of Natural and Synthetic Bioactive Heterocycles
  • 2.4.1.2 General Approaches to Syntheses of Biologically Active Heterocycles
  • 2.4.1.3 Total Syntheses of Natural Products
  • 2.4.2 Alkaloids
  • 2.4.2.1 General
  • 2.4.2.2 Synthesis
  • 2.4.2.3 Individual Groups of Alkaloids
  • 2.4.3 Antibiotics
  • 2.4.4 Vitamins
  • 2.4.5 Drugs
  • 2.4.5.1 General
  • 2.4.5.2 Definite Types of Activity
  • 2.4.5.2.1 Antibacterial Activity
  • 2.4.5.2.2 Anticancer and Related Activities
  • 2.4.5.2.3 Analgesic and Antiinflammatory Activity
  • 2.4.5.2.4 Antimalarial Activity
  • 2.4.5.2.5 Antitubercular Activity
  • 2.4.5.2.6 Antiviral Activity
  • 2.4.5.2.7 Effects on Nervous System
  • 2.4.5.2.8 Enzyme Inhibitors and Activators
  • 2.4.5.2.9 Target Receptors
  • 2.4.5.2.10 Other Activities
  • 2.4.5.3 Individual Substances and Groups of Compounds
  • 2.4.6 Pesticides
  • 2.4.7 Miscellaneous
  • 2.4.7.1 Enzymes, Coenzymes, and Their Models
  • 2.4.7.2 Amino Acids and Peptides
  • 2.4.7.3 Plant Metabolites
  • 2.4.7.4 Heterocycles Produced by Marine Organisms
  • 2.4.7.5 Other Topics
  • 3. Three-Membered Rings
  • 3.1 General Topics
  • 3.2 One Heteroatom
  • 3.2.1 One Nitrogen Atom
  • 3.2.1.1 Reactivity of Azirines and Aziridines
  • 3.2.1.2 Synthesis of Aziridines
  • 3.2.2 One Oxygen Atom
  • 3.2.2.1 Reactivity of Oxiranes
  • 3.2.2.2 Synthesis of Oxiranes
  • 3.3 Two Heteroatoms
  • 4. Four-Membered Rings
  • 4.1 General Topics
  • 4.1.1 One Nitrogen Atom
  • 4.1.2 One Oxygen Atom
  • 4.1.3 One Sulfur Atom
  • 4.2 Two Heteroatoms
  • 5. Five-Membered Rings
  • 5.1 General Topics
  • 5.2 One Heteroatom
  • 5.2.1 General
  • 5.2.2 One Nitrogen Atom
  • 5.2.2.1 Monocyclic Pyrroles
  • 5.2.2.2 Hydropyrroles
  • 5.2.2.3 Porphyrins and Related Systems
  • 5.2.2.4 Indoles, Carbazoles, Related Systems, and Hydrogenated Derivatives
  • 5.2.2.5 Isoindoles (Including Phthalocyanins and Porphyrazines)
  • 5.2.2.6 Polycyclic Systems Including Two or More Heterocycles
  • 5.2.3 One Oxygen Atom
  • 5.2.3.1 Furans
  • 5.2.3.2 Hydrofurans
  • 5.2.3.3 Annulated Furans
  • 5.2.3.4 Five-Membered Lactones
  • 5.2.4 One Sulfur Atom
  • 5.2.4.1 Thiophenes
  • 5.2.4.2 Annulated Thiophenes
  • 5.3 Two Heteroatoms
  • 5.3.1 General
  • 5.3.2 Two Nitrogen Atoms
  • 5.3.2.1 Pyrazoles
  • 5.3.2.2 Imidazoles
  • 5.3.2.3 Annulated Imidazoles
  • 5.3.3 One Nitrogen and One Oxygen Atom
  • 5.3.3.1 1,2-Heterocycles
  • 5.3.3.2 1,3-Heterocycles
  • 5.3.4 One Nitrogen and One Sulfur Atom
  • 5.3.5 Two Oxygen Atoms
  • 5.3.6 One Oxygen and One Sulfur Atoms
  • 5.3.7 Two Sulfur Atoms
  • 5.4 Three Heteroatoms
  • 5.4.1 Three Nitrogen Atoms
  • 5.4.1.1 Monocyclic Systems
  • 5.4.1.2 Annulated Triazoles
  • 5.4.2 Two Nitrogen Atoms and One Oxygen Atom
  • 5.4.3 Two Nitrogen Atoms and One Sulfur Atom
  • 5.5 Four Heteroatoms
  • 6. Six-Membered Rings
  • 6.1 General
  • 6.2 One Heteroatom
  • 6.2.1 One Nitrogen Atom
  • 6.2.1.1 Pyridines
  • 6.2.1.2 Pyridinium Compounds, Ylides, Pyridine N-Oxides
  • 6.2.1.3 Applications of Pyridines
  • 6.2.1.4 Bipyridines and Related Systems
  • 6.2.1.5 Hydropyridines
  • 6.2.1.6 Pyridines Annulated with Carbocycles
  • 6.2.1.7 Pyridines Annulated with Heterocycles
  • 6.2.2 One Oxygen Atom
  • 6.2.2.1 Pyrans and Hydropyrans
  • 6.2.2.2 Annulated Pyrans
  • 6.2.3 One Sulfur Atom
  • 6.3 Two Heteroatoms
  • 6.3.1 Two Nitrogen Atoms
  • 6.3.1.1 1,2-Heterocycles
  • 6.3.1.2 1,3-Heterocycles: Monocyclic Pyrimidines and Hydropyrimidines (Except Pyrimidine Nucleoside Bases and Nucleosides)
  • 6.3.1.3 Annulated Pyrimidines (Except Purines)
  • 6.3.1.4 Pyrimidine Nucleoside Bases and Purines
  • 6.3.1.5 Nucleotides and Nucleosides
  • 6.3.1.6 Nucleic Acids
  • 6.3.1.7 1,4-Heterocycles: Pyrazines and Hydropyrazines
  • 6.3.2 One Nitrogen and One Oxygen Atom
  • 6.3.3 One Nitrogen and One Sulfur Atom
  • 6.3.4 Two Oxygen Atoms
  • 6.4 Three Heteroatoms
  • 6.5 Four Heteroatoms
  • 7. Rings with More than Six Members
  • 7.1 Seven-Membered Rings
  • 7.1.1 One Heteroatom
  • 7.1.2 Two Heteroatoms
  • 7.2 Medium Rings
  • 7.3 Large Rings
  • 7.3.1 General Problems
  • 7.3.1.1 Structure, Stereochemistry, Reactivity, and Design
  • 7.3.1.2 Synthesis
  • 7.3.1.3 Applications
  • 7.3.2 Crown Ethers and Related Compounds
  • 7.3.3 Miscellaneous Macroheterocycles
  • 8. Heterocycles Containing Unusual Heteroatoms
  • 8.1 Phosphorus Heterocycles
  • 8.1.1 Chemistry of Individual Classes of P-Heterocycles
  • 8.1.2 Synthesis
  • 8.2 Boron Heterocycles
  • 8.2.1 Chemistry of Individual Classes of B-Heterocycles
  • 8.2.2 Synthesis
  • 8.2.3 Applications
  • 8.3 Silicon, Germanium, Tin, and Lead Heterocycles
  • 8.4 Selenium and Tellurium Heterocycles
  • 8.5 Other Unusual Heterocycles
  • 8.5.1 Metallacycles
  • 8.5.2 Metal Chelates and Related Complexes
  • References
  • Index
Chapter One

The Larock Reaction in the Synthesis of Heterocyclic Compounds


Jesús Herraiz-Cobo1,2, Fernando Albericio1,2,3 and Mercedes Álvarez1,2,4,*     1Institute for Research in Biomedicine, Barcelona Science Park-University of Barcelona, Barcelona, Spain     2CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, Spain     3Department of Chemistry, University of Barcelona, Barcelona, Spain     4Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
* Corresponding author: E-mail: mercedes.alvarez@irbbarcelona.org 

Abstract


The indole ring is one of the most common features in natural products and small molecules with important bioactivity. Larock reported a new methodology for the synthesis of the indole ring system based on the palladium-catalyzed heteroannulation of 2-iodoaniline and substituted alkyne moieties. This procedure was subsequently extended to the preparation of other nitrogen- and oxygen-containing heterocycles. This is the process of choice for the synthesis of a large number of heterocyclic derivatives, as it provides outstanding regioselectivity and good to excellent yields.

Keywords


Alkynes; Heteroannulation; Heterocycles; Natural compounds; Palladium catalyst

1. Introduction


The Larock indole synthesis, also known as the Larock heteroannulation, is a one-pot palladium-catalyzed heteroannulation of o-iodoaniline and internal alkynes for the synthesis of 2,3-disubstituted indoles. The original Larock reaction was performed with Pd(OAc)2 using carbonate or acetate bases with or without catalytic amounts of triphenyl phosphine and n-Bu4NCI. However, it was subsequently observed that LiCl is often more effective and reproducible (Scheme 1; 1991JA6689). The reaction was shown to be a high regioselective process giving the bulky substituent of the alkyne in position two of the resulting indole ring.
Scheme 1 Palladium-catalyzed heteroannulation of alkynes. Larock modified the annulation process to access 3-substituted indoles by employing silyl-substituted alkynes. In this case, the bulky silyl group dominates the regioselectivity of the annulation and thus serves as a phantom-directing group in the heteroannulation step. Silylated alkynes provide 2-silyl-3-substituted indoles with excellent regioselectivity. Subsequent desilylation affords 3-substituted indoles in good yield. In 1995, Larock and coworkers reported that this chemistry also provides a valuable route for the synthesis of benzofurans, benzopyrans, and isocoumarins in good to excellent yields (Figure 1; 1995JOC3270). Several reviews about the synthesis of heterocycles via palladium-catalyzed reactions containing revisions of Larock procedures have been made until the end of 2014 (2005CR2873, 2006CR2875, 2006CR4644). This chapter provides a review and update of the Larock reaction. It will be implemented not only for the preparation of indole and its derivatives but also for other heterocyclic systems, natural compounds, and derivatives.

2. Mechanism of Larock Heteroannulation


The scope and mechanism of palladium-catalyzed annulation of internal alkynes to give 2,3-disubstituted indoles, the effect of substituents on the aniline nitrogen or on the alkynes, as well as the effect of the salts such as LiCl or n-Bu4NCl were studied by Larock and coworkers (1998JOC7652). The mechanism they propose for indole synthesis proceeds as follows: (a) reduction of the Pd(OAc)2 to Pd(0); (b) coordination of the chloride to form a chloride-ligated zerovalent palladium species; (c) oxidative addition of the aryl iodide to Pd(0); (d) coordination of the alkyne to the palladium atom of the resulting arylpalladium intermediate and subsequent regioselective syn-insertion into the arylpalladium bond; (e) nitrogen displacement of the halide in the resulting vinyl palladium intermediate to form a six-membered, heteroatom-containing palladacycle; and (f) reductive elimination to form the indole and to regenerate Pd(0) (Scheme 2; 1993JA9531).
Figure 1 Benzoheterocycles synthesized by Larock heteroannulation. The first and third steps are well known and integral to a wide variety of Pd(0)-catalyzed processes. Less hindered alkynes are known to insert more readily than more hindered alkynes (1993T5471). Syn-addition of the arylpalladium compound to the alkyne has been established for the analogous palladium-catalyzed hydroarylation process (1986G725, 2004JOM4642) and implemented in many other alkyne insertion processes (1989JA34541989JOC2507, 1990JA8590, 1990TL4393, 1991JOC6487, 1991SL777, 1991TL4167, 1992JA791, 1992JA10091, 1992CC390, 1992PAC3323, 1992TL3253, 1992TL8039, 1993JOC560, 1993T5471, 1994JA7923, 1995TL1771).
Scheme 2 Proposed mechanism for Larock heteroannulation. The Larock annulation process is highly regioselective, and, generally, significantly higher in selectivity than the related palladium-catalyzed hydroarylation process, which often produces regioisomeric mixtures (1984TL3137, 1985T5121, 1986G725, 1986TL6397, 1988T481, 1989TL3465). The regioselectivity is perhaps due to chelation of the palladium in the arylpalladium intermediates by the neighboring nitrogen, which reduces the overall reactivity and increases the steric hindrance of these intermediates towards alkyne insertion. The controlling factor in the insertion processes may be the steric hindrance present in the developing carbon-carbon bond or the orientation of the alkyne immediately prior to syn-insertion of the alkyne into the aryl palladium bond. Alkyne insertion occurs to generate the least steric strain near the developing carbon-carbon bond rather than the longer carbon-palladium bond. The alkyne may adopt an orientation in which the more steric demanding group is located away from the sterically encumbered aryl group. The result of that orientation is the regioselectivity of the reaction in which the aryl group of the aniline is located at the less sterically hindered end of the triple bond and the nitrogen moiety at the more sterically hindered end. The regioselectivity of Larock indole annulation with 2-alkynylpyridines and o-iodoaniline to give 3-substituted-2-pyridin-2-ylindoles has also been rationalized by a combination of steric and electronic coordinative effects (2008TL363; Scheme 3). A coordination of the pyridine nitrogen during the catalytic cycle was postulated to justify the different regioisomeric ratios 94:6, 68:32, and 72:28 of the Larock reaction obtained with cyclopentyl 2-, 3- and 4-pyridyl acetylenes, respectively.
Scheme 3 Proposed coordinative effect in Larock indolization with 2-alkynylpyridines.
Figure 2 Structures of indole derivatives 1 and 2. The same work but using tert-butyl-2-pyridylacetylene showed the importance of steric factors in the regioselectivity of the Larock indolization. The large steric bulk of the tert-butyl group overrides the electronic effect of the pyridin-2-yl group favoring production of the 2-(tert-butyl)indole 1 over the 3-(tert-butyl)indole 2, in a ratio of 69:31 (Figure 2). Reversed regioselectivity has been described by Isobe and coworkers in the reaction between an N-protected iodoaniline and the a-C-glucosylpropargyl glycine 3 (2002MI2273). An excellent yield of the 3-substituted isotryptophan 4 was obtained using an N-tosyl protecting group. Isobe and coworkers could not identify the motif of reversed regioselectivity after systematic studies on the Larock reaction using N-tosyliodoaniline (2008MI2092; Scheme 4).

2.1. Homogeneous Catalyst


The ligand-free conditions of the Larock reaction work well with iodoanilines but not with the more economic and accessible 2-bromo or 2-chloroanilines. Lu, Senanayake, and coworkers were the first group to test the preparation of indole from chloroaniline or bromoanilines in combination with highly active phosphine ligands such as trialkylphosphines (Cy3P, t-Bu3P) (2004OL4129). Ferrocenyl phosphines (5-7) and biaryl phosphines (8-11) were examined (Figure 3). Among these phosphines, 1,1´-bis(di-tert-butylphosphino)ferrocene (7) was found to be the most active. Several bases were also tested to ascertain their effect on the reaction rate and regioselectivity.
Scheme 4 Reversed regioselectivity in the Larock...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

208,25 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok