Chordate Origins and Evolution

The Molecular Evolutionary Road to Vertebrates
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 14. Juli 2016
  • |
  • 220 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803006-6 (ISBN)
 

Chordate Origins and Evolution: The Molecular Evolutionary Road to Vertebrates focuses on echinoderms (starfish, sea urchins, and others), hemichordates (acorn worms, etc.), cephalochordates (lancelets), urochordates or tunicates (ascidians, larvaceans and others), and vertebrates. In general, evolution of these groups is discussed independently, on a larger scale: ambulacrarians (echi+hemi) and chordates (cephlo+uro+vert). Until now, discussion of these topics has been somewhat fragmented, and this work provides a unified presentation of the essential information.

In the more than 150 years since Charles Darwin proposed the concept of the origin of species by means of natural selection, which has profoundly affected all fields of biology and medicine, the evolution of animals (metazoans) has been studied, discussed, and debated extensively. Following many decades of classical comparative morphology and embryology, the 1980s marked a turning point in studies of animal evolution, when molecular biological approaches, including molecular phylogeny (MP), molecular evolutionary developmental biology (evo-devo), and comparative genomics (CG), began to be employed. There are at least five key events in metazoan evolution, which include the origins of 1) diploblastic animals, such as cnidarians; 2) triploblastic animals or bilaterians; 3) protostomes and deuterostomes; 4) chordates, among deuterostomes; and 5) vertebrates, among chordates. The last two have received special attention in relation to evolution of human beings.

During the past two decades, great advances have been made in this field, especially in regard to molecular and developmental mechanisms involved in the evolution of chordates. For example, the interpretation of phylogenetic relationships among deuterostomes has drastically changed. In addition, we have now obtained a large quantity of MP, evo-devo, and CG information on the origin and evolution of chordates.


  • Covers the most significant advances in this field to give readers an understanding of the interesting biological issues involved
  • Provides a unified presentation of essential information regarding each phylum and an integrative understanding of molecular mechanisms involved in the origin and evolution of chordates
  • Discusses the evolutionary scenario of chordates based on two major characteristic features of animals-namely modes of feeding (energy sources) and reproduction-as the two main forces driving animal evolution and benefiting dialogue for future studies of animal evolution


Noriyuki Satoh is a Professor of the Marine Genomics Unit, Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan. After obtaining a PhD at the University of Tokyo, he carried out research of developmental biology of tunicates at Kyoto University. Satoh and his colleagues have established Ciona intestinalis as a model organism of developmental biology, and he has also conducted research of developmental mechanisms involved in the origins and evolution of chordates. Dr. Satoh's group has also disclosed molecular mechanisms of notochord formation, and he is one of the leaders of the genome decoding projects of marine invertebrates, including tunicates, cephalochordates, and hemichordates.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 8,63 MB
978-0-12-803006-6 (9780128030066)
0128030062 (0128030062)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Chordate Origins and Evolution
  • Chordate Origins and Evolution: The Molecular Evolutionary Road to Vertebrates
  • Copyright
  • Contents
  • Preface
  • 1 - Deuterostomes and Chordates
  • 1.1 A BRIEF BACKGROUND
  • 1.2 DEUTEROSTOMES AND CHORDATES
  • 1.2.1 Deuterostomes
  • 1.2.2 Ambulacraria
  • 1.2.3 Chordates
  • 1.2.4 Olfactores
  • 1.3 DEUTEROSTOME PHYLA
  • 1.3.1 Echinoderms
  • 1.3.2 Hemichordates
  • 1.3.3 Cephalochordates
  • 1.3.4 Urochordates (Tunicates)
  • 1.3.5 Vertebrates
  • 1.4 CONCLUSIONS
  • 2 - Hypotheses on Chordate Origins
  • 2.1 THE ANNELID THEORY
  • 2.2 THE AURICULARIA HYPOTHESIS
  • 2.3 THE CALCICHORDATE HYPOTHESIS
  • 2.4 THE PEDOMORPHOSIS SCENARIO: WAS THE ANCESTOR SESSILE OR FREE-LIVING?
  • 2.5 THE NEW INVERSION HYPOTHESIS
  • 2.6 THE ENTEROPNEUST HYPOTHESIS
  • 2.6.1 A New Enteropneust Hypothesis
  • 2.7 THE ABORAL-DORSALIZATION HYPOTHESIS
  • 2.8 CONCLUSIONS
  • 3 - Fossil Records
  • 3.1 THE CAMBRIAN AND EDIACARAN PERIODS
  • 3.2 CROWN, STEM, AND TOTAL GROUPS
  • 3.3 FOSSIL RECORDS OF INVERTEBRATE DEUTEROSTOMES
  • 3.3.1 Echinoderms
  • 3.3.2 Hemichordates
  • 3.3.3 Cephalochordates
  • 3.3.4 Urochordates (Tunicates)
  • 3.4 FOSSIL RECORDS OF VERTEBRATES
  • 3.4.1 Cyclostome-Like Fossils
  • 3.4.2 Early Vertebrate Fossils
  • 3.4.3 Conodont Elements
  • 3.5 CONCLUSIONS
  • 4 - Molecular Phylogeny
  • 4.1 MOLECULAR PHYLOGENY OF METAZOANS
  • 4.2 MOLECULAR PHYLOGENY OF DEUTEROSTOME TAXA
  • 4.2.1 Ambulacraria and Chordata: Two Major Groups of Deuterostomes
  • 4.2.2 Cephalochordates Came First Among Chordates and Then Urochordates + Vertebrates as Olfactores
  • 4.2.3 Timing of the Emergence of Deuterostome Groups
  • 4.3 RELATIONSHIPS WITHIN EACH DEUTEROSTOME PHYLUM
  • 4.3.1 Echinoderms
  • 4.3.2 Hemichordates
  • 4.3.3 Cephalochordates
  • 4.3.4 Urochordates (Tunicates)
  • 4.3.5 Vertebrates
  • 4.4 XENACOELOMORPHA
  • 4.5 MICRORNAS
  • 4.6 CONCLUSIONS
  • 5 - Comparative Genomics of Deuterostomes
  • 5.1 GENOME DECODING
  • 5.2 GENOMIC FEATURES OF FIVE REPRESENTATIVE DEUTEROSTOME TAXA
  • 5.2.1 Echinoderm Genomes
  • 5.2.2 Hemichordate Genomes
  • 5.2.3 Cephalochordate Genome
  • 5.2.4 Urochordate Genomes
  • 5.2.4.1 Ciona intestinalis
  • 5.2.4.2 Oikopleura dioica
  • 5.2.5 Vertebrate Genomes
  • 5.2.5.1 Lampreys
  • 5.2.5.2 Elephant Shark
  • 5.2.5.3 Fish
  • 5.3 GENE FAMILIES IN DEUTEROSTOMES AND THE ANCESTRAL GENE SET
  • 5.3.1 Gene Families in Deuterostomes
  • 5.3.2 Expansion of Gene Families in Deuterostomes
  • 5.4 EXON-INTRON STRUCTURES
  • 5.5 SYNTENY
  • 5.5.1 Macrosynteny
  • 5.5.2 Microsynteny
  • 5.6 CONSERVED NONCODING SEQUENCES
  • 5.7 REPETITIVE ELEMENTS
  • 5.8 TAXONOMICALLY RESTRICTED GENES
  • 5.9 CONCLUSIONS
  • 6 - The Origins of Chordates
  • 6.1 EVALUATION OF HYPOTHESES FOR CHORDATE ORIGINS
  • 6.1.1 How Do We Interpret Deuterostome Evolution?
  • 6.1.2 The Chordate Ancestor Was Free-Living
  • 6.1.3 The Auricularia Hypothesis Is Not Supported
  • 6.1.4 The Calcichordate Hypothesis Cannot Be Accepted
  • 6.1.5 The Annelid Hypothesis Is Not Related to the Origins of Chordates
  • 6.1.6 The Enteropneust Hypothesis and Inversion Hypothesis Need Reconsideration
  • 6.2 THE PHARYNGEAL GENE CLUSTER AND THE ORIGIN OF DEUTEROSTOMES
  • 6.3 HOX AND CHORDATE EVOLUTION
  • 6.3.1 Ambulacrarian Hox Genes
  • 6.3.2 Cephalochordate Hox Genes
  • 6.3.3 Urochordate Hox Genes
  • 6.3.4 Vertebrate Hox Genes
  • 6.3.4.1 Cyclostome Hox Genes
  • 6.3.4.2 Gnathostome Hox Genes
  • 6.3.5 Deuterostome Posterior Hox Genes: An Unsolved Origin
  • 6.4 PARAHOX GENES
  • 6.5 CONCLUSIONS
  • 7 - The New Organizers Hypothesis for Chordate Origins
  • 7.1 CHORDATE FEATURES
  • 7.2 THE NEW ORGANIZERS HYPOTHESIS OF CHORDATE ORIGINS
  • 7.3 CEPHALOCHORDATE EMBRYOGENESIS: PRIMITIVE CHORDATE BODY-PLAN FORMATION
  • 7.4 CHORDATE FEATURES AND MOLECULAR DEVELOPMENTAL MECHANISMS
  • 7.5 THE NOTOCHORD: A MESODERMAL NOVELTY
  • 7.5.1 Brachyury: A Key Transcription Factor for Notochord Formation
  • 7.5.2 Regulatory Networks of Brachyury
  • 7.6 SOMITES (MYOTOMES): A MESODERMAL NOVELTY
  • 7.7 THE POSTANAL TAIL: A MESODERMAL NOVELTY
  • 7.8 THE DORSAL CENTRAL NERVOUS SYSTEM: AN ECTODERMAL NOVELTY
  • 7.8.1 The Gene Regulatory Network for Neural Development
  • 7.8.2 Regionalization of the Central Nervous System
  • 7.9 HATSCHEK'S PIT: AN ECTODERMAL NOVELTY
  • 7.10 THE ENDOSTYLE: AN ENDODERMAL NOVELTY
  • 7.11 CONCLUSIONS
  • 8 - The Dorsoventral-Axis Inversion Hypothesis: The Embryogenetic Basis for the Appearance of Chordates
  • 8.1 SPEMANN'S ORGANIZER, THE NIEUWKOOP CENTER, AND THE THREE-SIGNAL MODEL
  • 8.1.1 Spemann's Organizer
  • 8.1.2 The Nieuwkoop Center
  • 8.1.3 The Three-Signal Model
  • 8.2 AXIAL PATTERNING OF DEUTEROSTOME BODY PLANS
  • 8.2.1 The Animal-Vegetal Axis and Formation of Endomesoderm
  • 8.2.2 The Anteroposterior Axis
  • 8.2.3 The Dorsoventral Dimension and the Inversion Hypothesis
  • 8.2.4 Left-Right Asymmetry and the Nodal Signal
  • 8.3 INTERPRETATION OF THE DORSOVENTRAL-AXIS INVERSION HYPOTHESIS
  • 8.3.1 Nodal Function in Mesoderm Formation
  • 8.3.2 Interpretation of the Dorsoventral-Axis Inversion
  • 8.4 CONCLUSIONS
  • 9 - The Enteropneust Hypothesis and Its Interpretation
  • 9.1 THE STOMOCHORD AND OTHER ORGANS PROPOSED AS ANTECEDENTS TO THE NOTOCHORD
  • 9.1.1 The Stomochord
  • 9.1.2 The Pygochord
  • 9.1.3 The Annelid Axochord
  • 9.2 THE NERVOUS SYSTEM OF ENTEROPNEUSTS
  • 9.2.1 The Dorsal Collar Cord
  • 9.2.2 Gene Expression Profiles in Epidermis along the Anteroposterior Axis
  • 9.2.3 Gene Expression Profiles along the DV Axis
  • 9.3 THE SPEMANN'S ORGANIZER-LIKE SYSTEM IN HEMICHORDATES
  • 9.4 INTERPRETATIONS OF THE ENTEROPNEUST HYPOTHESIS
  • 9.5 CONCLUSIONS
  • 10 - Chordate Evolution: An Extension of the New Organizers Hypothesis
  • 10.1 EVOLUTION OF VERTEBRATES
  • 10.1.1 Neural Crest
  • 10.1.1.1 Evolution of the Neural Crest and Its Gene Regulatory Network
  • 10.1.2 The Placodes
  • 10.1.2.1 The Evolution of the Placode and Its Gene Regulatory Network
  • 10.1.3 The Cardiopharyngeal Field
  • 10.1.4 Cartilage and Bone
  • 10.1.5 Adaptive Immune System
  • 10.2 EVOLUTION OF UROCHORDATES
  • 10.2.1 Precocious Mode of Embryonic Development
  • 10.2.2 Asexual Reproduction of Colonial Ascidians
  • 10.2.3 Pluripotent Stem-Like Cells for Bud Formation
  • 10.2.4 The Development of Colony Specificity
  • 10.3 CONCLUSION
  • 11 - How Did Chordates Originate and Evolve?
  • 11.1 THE THREE-PHYLUM SYSTEM OF CHORDATES
  • 11.2 MECHANISMS INVOLVED IN ORIGINATION OF DEUTEROSTOME NOVELTIES
  • 11.3 HORIZONTAL GENE TRANSFER
  • 11.3.1 Acquisition of Cellulose Biosynthetic Ability and Urochordate Evolution
  • 11.3.2 Genes Encoding Enzymes Involved in Sialic Acid Metabolism
  • 11.4 THE SIGNIFICANCE OF GENE DUPLICATION IN DEUTEROSTOME EVOLUTION
  • 11.5 SIGNIFICANCE OF DOMAIN SHUFFLING IN CHORDATE EVOLUTION
  • 11.6 THE SIGNIFICANCE OF STRUCTURAL GENES IN METAZOAN EVOLUTION
  • 11.7 THE PHYLOTYPIC STAGE
  • 11.8 CONCLUSIONS
  • 12 - Summary and Perspective
  • 12.1 SUMMARY
  • 12.2 PERSPECTIVE
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

77,29 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok