Abbildung von: Medical Imaging - Wiley

Medical Imaging

Wiley (Verlag)
1. Auflage
Erschienen am 18. Mai 2023
272 Seiten
E-Book
PDF mit Adobe-DRM
978-1-119-78558-3 (ISBN)
173,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Adobe-DRM
E-Book Einzellizenz
Als Download verfügbar
MEDICAL IMAGING

Written and edited by a team of experts in the field, this is the most comprehensive and up-to-date study of and reference for the practical applications of medical imaging for engineers, scientists, students, and medical professionals.

Medical imaging is one of the most important diagnostic tools in healthcare. More than 50% of the clinical market depends on diagnostic imaging to identify different pathological conditions in subjects. It is, therefore, essential for healthcare personnel and paramedical staff as well as the technicians and the supporting engineers to understand the basics of medical imaging. This subject is of utmost importance to every individual involved in the healthcare industry, right from research and development until application and service.

Medical Imaging presents the salient aspects of diagnostic imaging modalities. The subjects that are covered are the basic functional principles, the concepts involved, the instrumentation-based aspects, applications, and the latest trends in imaging modalities. This book concentrates on X-rays imaging, computer tomography-based imaging, ultrasound techniques, radionuclide imaging, MRI techniques, and other important diagnostic modalities which are commonly used for medical diagnosis of various pathologies in human beings.

Covering all of the latest advances, innovations, and developments in practical applications for medical imaging, this volume represents the most comprehensive, up-to-date coverage of the issues of the day and state of the art. Whether for the veteran engineer or scientist or a student, this volume is a must-have for any library.
H. S. Sanjay, PhD, is an Assistant Professor in the Department of Medical Electronics, M S Ramaiah Institute of Technology. He earned his PhD in electronics engineering from Jain University and a post-graduate degree in biomedical engineering from Manipal University. He has over 12 years of academic experience and has been teaching undergraduate students since 2009. He has contributed to five books and authored over 20 articles in scholarly journals, including being a reviewer for five journals.

M. Niranjanamurthy, PhD, is an Assistant professor in the Department of Computer Applications, M S Ramaiah Institute of Technology, Bangalore, Karnataka. He earned his PhD in computer science at JJTU. He has over 12 years of teaching experience and two years of industry experience as a software engineer. He has published 10 books and 80 papers in technical journals and conferences. He has 6 patents to his credit and has won numerous awards.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgements
  • Chapter 1 Introduction to Medical Imaging
  • 1.1 Medical Imaging - An Insight
  • 1.2 Types of Diagnostic Imaging Modalities
  • 1.2.1 Radiography
  • 1.2.2 Tomography
  • 1.2.3 Ultrasound
  • 1.2.4 Nuclear Medicine
  • 1.2.5 Magnetic Resonance Imaging
  • 1.2.6 Functional Magnetic Resonance Imaging (fMRI)
  • 1.2.7 Functional Near Infrared Imaging
  • 1.2.8 Elastography
  • 1.2.9 Photoacoustic Imaging
  • 1.2.10 Magnetic Particle Imaging
  • 1.3 3D Rendering
  • 1.4 Diagnostic Images
  • 1.5 Medical Imaging in Pharmaceutical Applications
  • Glossary-Appendix
  • Chapter 2 Fundamentals of X-Rays
  • 2.1 Electromagnetic Radiations
  • 2.2 Wave Nature
  • 2.2.1 Particle Nature
  • 2.2.2 Intensity of an X-Ray Beam
  • 2.2.3 Roentgen (R)
  • 2.2.4 Radiation Absorbed Dose (rad)
  • 2.2.5 X-Ray Interactions
  • 2.2.6 Interaction Between X-Ray and Matter
  • 2.2.7 Coherent Scattering
  • 2.2.8 Compton Effect
  • 2.3 Photoelectric Effect
  • 2.3.1 Pair Production
  • 2.3.2 Photodisintegration
  • 2.4 Interaction Between X-Ray and Tissues
  • 2.5 Factors Affecting Attenuation Coefficients
  • 2.6 Attenuation Due to Coherent Scattering (ßcoh)
  • 2.7 Attenuation Due to Compton Scattering (ßcom) and Photoelectric Effect (ßpho)
  • 2.8 Generation and Detection of X-Rays
  • 2.8.1 Generation of X-Rays
  • 2.8.2 White Radiation
  • 2.8.3 Characteristic Radiation
  • 2.9 X-Ray Generators
  • 2.9.1 Line Focus Principle
  • 2.9.2 X-Ray Tube Ratings
  • 2.9.3 Target Material
  • 2.9.4 Tube Voltage
  • 2.9.5 Tube Current
  • 2.9.6 Filament Current
  • 2.10 Filters
  • 2.10.1 Beam Restrictors
  • 2.10.2 Aperture Diaphragms
  • 2.10.3 Cones and Cylinders
  • 2.10.4 Collimators
  • 2.10.5 Grids
  • 2.11 X-Ray Visualization
  • 2.11.1 Intensifying Screens
  • 2.11.2 Image Intensifiers
  • 2.12 Detection of X-Rays
  • 2.12.1 X-Ray Film
  • 2.12.2 Optical Density
  • 2.12.3 Characteristic Curve
  • 2.12.4 Film Gamma
  • 2.12.5 Speed
  • 2.12.6 Film Latitude
  • 2.12.7 Double-Emulsion Film
  • 2.13 Radiation Detectors
  • 2.13.1 Scintillation Detector
  • 2.13.2 Ionization Chamber
  • 2.14 X-Ray Diagnostic Approaches
  • 2.14.1 Conventional X-Ray Radiography
  • 2.14.2 Penumbra
  • 2.14.3 Field Size
  • 2.14.4 Film Magnification
  • 2.15 Fluoroscopy
  • 2.16 Angiography
  • 2.17 Mammography
  • 2.18 Xeroradiography
  • 2.19 Image Subtraction
  • 2.19.1 Digital Subtraction Angiography (DSA)
  • 2.19.2 Dual Energy Subtraction
  • 2.19.3 K-Edge Subtraction
  • 2.20 Conventional Tomography
  • 2.20.1 X-Ray Image Attributes
  • 2.20.2 Spatial Resolution
  • 2.21 Point Spread Function (PSF)
  • 2.21.1 Line Spread Function (LSF)
  • 2.21.2 Edge Spread Function (ESF)
  • 2.21.3 System Transfer Function (STF)
  • 2.22 Image Noise
  • 2.23 Image Contrast
  • 2.24 Receiver Operating Curve (ROC)
  • 2.25 Biological Effects of X-Ray Radiations
  • 2.25.1 Determinants of Biological Effects
  • Glossary-Appendix
  • Chapter 3 X-Ray Computed Tomography
  • 3.1 Introduction to X-Ray Computed Tomography
  • 3.2 CT Number
  • 3.3 X-Ray Detectors in CT Machines
  • 3.3.1 Energy Integrating Detectors
  • 3.3.2 Photon Counting Detectors
  • 3.4 CT Imaging
  • 3.4.1 Radon Transform
  • 3.4.2 Sampling
  • 3.4.3 2D Image Reconstruction
  • 3.4.4 Direct Fourier Transform
  • 3.4.5 Filtered Back Projection (FBP)/Convolution Back Projection (CBP)
  • 3.4.6 Fan Beam Projections
  • 3.5 Computer Tomography-Based Diagnostics
  • 3.5.1 Single Slice Computed Tomography
  • 3.5.2 Multislice Computed Tomography
  • 3.5.3 Cardiac CT
  • 3.5.4 Dual Energy Computer Tomography
  • 3.6 Image Quality
  • 3.6.1 Resolution
  • 3.6.2 Noise
  • 3.6.3 Contrast
  • 3.6.4 Image Artifacts
  • 3.7 CT Machine - The Hardware Aspects
  • 3.8 Generations of CT Machines
  • 3.9 Biological Effects and Safety-Based Aspects
  • Glossary-Appendix
  • Chapter 4 Ultrasound Imaging
  • 4.0 Ultrasound
  • 4.1 Basics of Acoustic Waves
  • 4.2 Propagation of Waves in Homogeneous Media
  • 4.3 Linear Wave Equation
  • 4.4 Loudness and Intensity
  • 4.5 Interference
  • 4.6 Attenuation
  • 4.7 Nonlinearity
  • 4.8 Propagation of Waves in Non-Homogeneous Media
  • 4.9 Reflection and Refraction
  • 4.10 Scattering
  • 4.11 Doppler Effect in the Propagation of the Acoustic Wave
  • 4.12 Generation and Detection of Ultrasound
  • 4.13 Ultrasonic Transducer
  • 4.14 Mechanical Matching
  • 4.15 Electrical Matching
  • 4.16 Ultrasound Imaging
  • 4.16.1 Gray Scale Imaging
  • 4.16.1.1 Data Acquisition
  • 4.16.1.2 Amplitude Mode (A-Mode)
  • 4.16.1.3 Brightness Mode (B-Mode)
  • 4.16.1.4 Motion Mode (M-Mode)
  • 4.17 Image Reconstruction
  • 4.18 Schlieren System
  • 4.19 Doppler Imaging Approaches
  • 4.19.1 Continuous Wave Doppler System
  • 4.19.2 Pulse Wave Doppler System
  • 4.19.3 Color Doppler Flow Imaging
  • 4.20 Tissue Characterization
  • 4.20.1 Velocity
  • 4.20.2 Absorption
  • 4.20.3 Scattering
  • 4.21 Ultrasound Image Characteristics
  • 4.21.1 Spatial Resolution
  • 4.21.2 Image Contrast
  • 4.21.3 Ultrasonic Texture
  • 4.22 Biological Effects of Ultrasound
  • 4.22.1 Acoustic Aspects at High Intensity Levels
  • 4.22.2 Cavitation
  • 4.22.3 Transient Cavitation
  • 4.22.4 Stable Cavitation
  • 4.22.5 Wave Distortion
  • 4.22.6 Bioeffects (Thermal and Non-Thermal Effects)
  • Glossary-Appendix
  • Chapter 5 Radionuclide Imaging
  • 5.1 Radionuclide Imaging - A Brief History
  • 5.2 An Insight Into Radioactivity
  • 5.2.1 Nuclear Particles
  • 5.2.2 Radioactive Decay
  • 5.2.3 Specific Activity
  • 5.2.4 Interactions Between Nuclear Particles and Matter
  • 5.2.4.1 Alpha Particles
  • 5.2.4.2 Beta Particles
  • 5.2.4.3 Gamma Particles
  • 5.2.5 Properties of Radionuclides
  • 5.2.5.1 Physical Properties
  • 5.2.5.2 Biological Properties
  • 5.3 Generation of Nuclear Emission
  • 5.3.1 Nuclear Sources
  • 5.3.2 99mTc Radionuclide Generator
  • 5.3.3 Detection of Nuclear Emissions
  • 5.3.3.1 Ion Collection Detectors
  • 5.3.3.2 Scintillation Fetectors
  • 5.3.3.3 Solid State Detectors
  • 5.3.3.4 Collimator
  • 5.4 Radionuclide Detection
  • 5.4.1 Rectilinear Scanning Machines
  • 5.4.2 Scintillation Camera (Gamma Camera)
  • 5.4.2.1 Collimator
  • 5.4.2.2 Scintillation Crystal
  • 5.4.2.3 Photomultiplier Tube
  • 5.4.3 Longitudinal Section Tomography (LST)
  • 5.4.4 Single Photon Emission Computer Tomography (SPECT)
  • 5.4.5 Positron Emission Tomography (PET)
  • 5.5 Diagnostic Approaches Using Radiation Detector Probes
  • 5.5.1 Thyroid Function Assessment
  • 5.5.2 Renal Function Test
  • 5.5.3 Blood Volume Assessment
  • 5.6 Radionuclide Image Characteristics
  • 5.6.1 Spatial Resolution
  • 5.6.2 Image Contrast
  • 5.6.3 Image Noise
  • 5.7 Biological Effects of Radionuclides
  • Glossary-Appendix
  • Chapter 6 Magnetic Resonance Imaging
  • 6.1 Basics of Nuclear Magnetic Resonance
  • 6.2 Larmor Frequency
  • 6.3 Relaxation
  • 6.3.1 T1 (Longitudinal Relaxation)
  • 6.3.2 T2 (Transverse Relaxation)
  • 6.4 Image Contrast
  • 6.5 Repetition Time (TR) and T1 Weighting
  • 6.6 Echo Time (TE) and T2 Weighting
  • 6.7 Saturation at Short Repetition Times
  • 6.8 Flip Angle/Tip Angle
  • 6.9 Presaturation
  • 6.10 Magnetization Transfer
  • 6.11 Slice Selection
  • 6.12 Spatial Encoding
  • 6.13 Phase Encoding
  • 6.14 Frequency Encoding
  • 6.15 K-Space
  • 6.16 Image Noise
  • 6.17 The MR Scanning Machine
  • 6.17.1 The Magnet
  • 6.17.2 Permanent Magnet
  • 6.17.3 Resistive Magnets
  • 6.17.4 Superconducting Magnets
  • 6.17.5 Quenching
  • 6.17.6 Shimming
  • 6.17.7 Shielding
  • 6.17.8 The Gradient System
  • 6.17.9 The Radiofrequency System
  • 6.17.10 The Computer System
  • 6.18 Pulse Sequences
  • 6.18.1 Spin Echo Sequence
  • 6.18.1.1 Black Blood Effect
  • 6.18.2 Inversion Recovery Sequence
  • 6.18.3 Short TI Inversion Recovery (STIR) Sequences
  • 6.18.4 Fluid Attenuated Recovery (FLAIR) Sequences
  • 6.18.5 Gradient Echo Sequence
  • 6.19 Parallel Imaging
  • 6.20 MR Artifacts
  • 6.21 Motion Artifacts
  • 6.22 Flow Artifacts
  • 6.23 Phase Wrapping
  • 6.24 Chemical Shift
  • 6.25 Magnetic Susceptibility
  • 6.26 Truncation Artifact
  • 6.27 Magic Angle
  • 6.28 Eddy Currents
  • 6.29 Partial Volume Artifact
  • 6.30 Inhomogeneous Fat Suppression
  • 6.31 Zipper Artifacts
  • 6.32 Crisscross Artifact
  • 6.33 Bioeffects and Safety
  • Glossary-Appendix
  • About the Authors
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten. 

Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer  E-Book Hilfe.