Hendee's Physics of Medical Imaging

 
 
Wiley-Blackwell (Verlag)
  • 5. Auflage
  • |
  • erschienen am 8. Februar 2019
  • |
  • 496 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-118-67106-1 (ISBN)
 
An up-to-date edition of the authoritative text on the physics of medical imaging, written in an accessible format The extensively revised fifth edition of Hendee's Medical Imaging Physics, offers a guide to the principles, technologies, and procedures of medical imaging. Comprehensive in scope, the text contains coverage of all aspects of image formation in modern medical imaging modalities including radiography, fluoroscopy, computed tomography, nuclear imaging, magnetic resonance imaging, and ultrasound. Since the publication of the fourth edition, there have been major advances in the techniques and instrumentation used in the ever-changing field of medical imaging. The fifth edition offers a comprehensive reflection of these advances including digital projection imaging techniques, nuclear imaging technologies, new CT and MR imaging methods, and ultrasound applications. The new edition also takes a radical strategy in organization of the content, offering the fundamentals common to most imaging methods in Part I of the book, and application of those fundamentals in specific imaging modalities in Part II. These fundamentals also include notable updates and new content including radiobiology, anatomy and physiology relevant to medical imaging, imaging science, image processing, image display, and information technologies. The book makes an attempt to make complex content in accessible format with limited mathematical formulation. The book is aimed to be accessible by most professionals with lay readers interested in the subject. The book is also designed to be of utility for imaging physicians and residents, medical physics students, and medical physicists and radiologic technologists perpetrating for certification examinations. The revised fifth edition of Hendee's Medical Imaging Physics continues to offer the essential information and insights needed to understand the principles, the technologies, and procedures used in medical imaging.
5. Auflage
  • Englisch
  • Somerset
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • Überarbeitete Ausgabe
  • 141,53 MB
978-1-118-67106-1 (9781118671061)
weitere Ausgaben werden ermittelt
  • Intro
  • Hendee's Physics of Medical Imaging
  • Contents
  • Foreword
  • Commentary by William Hendee
  • Clarification and Acknowledgment
  • Introduction: The Role of Imaging in Medicine
  • I.1 Introduction
  • I.2 Historical Foundation of Medical Imaging
  • I.3 What Is Medical Imaging?
  • I.4 Advances in Medical Imaging
  • I.5 Why Physics in Medicine?
  • References
  • 1 Physics of Radiation and Matter
  • 1.1 Introduction
  • 1.2 Electromagnetic Radiation
  • 1.2.1 The Atom
  • 1.2.2 Structure of the Atom
  • 1.2.3 The Nucleus
  • 1.3 Radioactivity
  • 1.3.1 Decay Schemes
  • 1.3.2 Mathematics of Radioactive Decay
  • 1.3.3 Artificial Production of Radionuclides
  • 1.4 Radiation Interactions with Matter
  • 1.4.1 Ionizing Radiation Interactions
  • 1.4.2 Indirectly Ionizing Radiation Interactions
  • 1.4.3 Nonionizing Electromagnetic Radiation
  • 1.5 Production of X-rays
  • 1.5.1 Conventional X-ray Tubes
  • 1.6 Radiation Detectors
  • 1.6.1 General Detector Properties
  • 1.6.2 Gas-Filled Detectors
  • 1.6.3 Solid Scintillation Detectors
  • 1.6.4 Liquid Scintillation Detectors
  • 1.6.5 Semiconductor Radiation Detectors
  • References
  • 2 Anatomy, Physiology, and Pathology in Imaging
  • 2.1 Introduction
  • 2.2 Interaction of Radiation with Tissue
  • 2.2.1 Properties of Human Tissue
  • 2.2.2 Human Body Attributes Influencing Imaging
  • 2.3 Structure and Function
  • 2.3.1 Imaging Planes, Directions, and Standard Display
  • 2.3.2 Organ Systems, Pathology, and Depiction
  • 2.3.3 Body Systems and Imaging
  • References
  • 3 Imaging Science
  • 3.1 Introduction
  • 3.2 Basic Statistics
  • 3.2.1 Nature of Error
  • 3.2.2 Singular Metrics of Statistics
  • 3.2.3 Probability Distributions
  • 3.2.4 Propagation of Error
  • 3.2.5 Quantities of Precision
  • 3.2.6 Statistical Analysis
  • 3.2.7 Binary Classification
  • 3.2.8 ROC Methodology
  • 3.3 Modeling Radiation Interactions
  • 3.3.1 Monte Carlo Simulations
  • 3.3.2 Simulation Implementations
  • 3.3.3 Common Applications of Monte Carlo Simulations in Medical Imaging
  • 3.4 Image Quality
  • 3.4.1 Image Representations
  • 3.4.2 Foundational Definitions of Image Quality
  • 3.4.3 Image Quality Beyond Resolution and Noise
  • 3.4.4 Perceptual Quality
  • 3.5 Image Processing
  • 3.5.1 Arithmetic Operations
  • 3.5.2 Neighborhood Analysis
  • 3.5.3 Image Reconstruction
  • 3.5.4 Image Segmentation
  • References
  • 4 Radiobiology, Dosimetry, and Protection
  • 4.1 Introduction
  • 4.2 Radiation Quantity and Quality
  • 4.2.1 Intensity
  • 4.2.2 Traditional and Système International Units
  • 4.2.3 Radiation Exposure
  • 4.2.4 Units of Radiation Dose
  • 4.3 Radiation Effects in Cells
  • 4.3.1 Free Radical Formation
  • 4.3.2 Cell Survival Studies
  • 4.3.3 Modification of Cellular Responses
  • 4.4 Radiation Effects in Animal Systems
  • 4.4.1 Background Radiation
  • 4.4.2 Deterministic Effects
  • 4.4.3 Acute Radiation Syndrome
  • 4.4.4 Stochastic Effects
  • 4.4.5 Radiation Risk Estimation
  • 4.4.6 Radiation Risk Models
  • 4.4.7 Radiation Risk and Age
  • 4.4.8 Uncertainties in Estimates of Risk
  • 4.5 Determination of Dose in Humans
  • 4.5.1 Estimating Radiation Dose to Organs
  • 4.5.2 Estimating Radiation Dose from Internal Radiation Sources
  • 4.6 Protection from Radiation
  • 4.6.1 Exposure Situations
  • 4.6.2 Radiation Exposure Personnel Types
  • 4.6.3 Dose Limits
  • 4.6.4 Reference Levels
  • 4.6.5 Regulatory Authority for Radiation Protection
  • 4.6.6 Protective Barriers for Radiation Sources
  • References
  • 5 Imaging Operation and Infrastructure
  • 5.1 Introduction
  • 5.2 Image Perception
  • 5.2.1 Human Vision
  • 5.2.2 Visual Acuity
  • 5.2.3 Recognition and Interpretation of Visual Information
  • 5.2.4 Modeling Image Interpretation
  • 5.3 Medical Displays
  • 5.3.1 Luminance Transformation
  • 5.3.2 Analog Displays
  • 5.3.3 Digital Displays
  • 5.3.4 Display Characteristics for Medical Use
  • 5.3.5 Monitoring Display Performance
  • 5.4 Imaging Informatics
  • 5.4.1 Standards
  • 5.4.2 Medical Data Storage and Transportation
  • 5.4.3 Workflow
  • 5.5 Clinical Imaging Operation
  • 5.5.1 Physics Inspection and Quality Control
  • 5.5.2 Optimization of Image Quality and Dose
  • 5.5.3 Retrospective Analysis of Clinical Operation
  • References
  • 6 Projection X-ray Imaging
  • 6.1 Introduction
  • 6.2 Projection X-ray Setup
  • 6.3 X-ray Projection Modalities
  • 6.3.1 Radiography
  • 6.3.2 Mammography
  • 6.3.3 Fluoroscopy
  • 6.4 Key Components of Projection X-ray Systems
  • 6.4.1 X-ray Tube and Generator
  • 6.4.2 Antiscatter Grid
  • 6.4.3 Analog Imaging Detectors
  • 6.4.4 Digital Sensors
  • 6.5 Exposure Control
  • 6.5.1 Automatic Exposure Control
  • 6.5.2 Exposure Index
  • References
  • 7 Volumetric X-ray Imaging
  • 7.1 Introduction
  • 7.2 Tomosynthesis
  • 7.2.1 Key Components of Tomosynthesis
  • 7.2.2 Tomosynthesis Fundamentals
  • 7.2.3 Dose and Image Quality Considerations in Tomosynthesis
  • 7.3 Computed Tomography
  • 7.3.1 CT Fundamentals
  • 7.3.2 CT Designs
  • 7.3.3 CT Radiation Dose Considerations
  • 7.3.4 Advanced CT Acquisition Techniques
  • 7.4 Volumetric X-ray Reconstruction
  • 7.4.1 Filtered Back Projection
  • 7.4.2 Iterative Reconstruction
  • 7.4.3 Reconstruction Incorporating Prior Information
  • References
  • 8 Nuclear Medicine
  • 8.1 Introduction
  • 8.1.1 Radionuclides
  • 8.1.2 Nuclear Medicine Applications
  • 8.2 Counting Systems
  • 8.2.1 Radiation Detectors
  • 8.2.2 Pulse-Height Analyzers
  • 8.2.3 Detection Efficiency
  • 8.2.4 Well Counters and Uptake Probes
  • 8.3 Principles of Scintillation Camera
  • 8.3.1 Scintillation Detector
  • 8.3.2 Collimators
  • 8.3.3 Gamma Camera Corrections
  • 8.4 Emission Computed Tomography
  • 8.4.1 Tomographic Reconstruction
  • 8.4.2 Display of Tomographic Data
  • 8.5 Single-Photon Emission Computed Tomography (SPECT)
  • 8.5.1 Projection Data
  • 8.5.2 Rotating Gamma Cameras
  • 8.5.3 Quality Control for Rotating Gamma Camera SPECT
  • 8.5.4 Factors Affecting SPECT Image Quality
  • 8.5.5 Dedicated SPECT Systems
  • 8.5.6 Hybrid Systems
  • 8.6 Positron Emission Tomography (PET)
  • 8.6.1 Positron Emission
  • 8.6.2 Annihilation Coincidence Detection
  • 8.6.3 PET Data Acquisition
  • 8.6.4 Sampling and Sensitivity
  • 8.6.5 Whole-Body Scanners
  • 8.6.6 Dedicated PET Systems
  • 8.6.7 Hybrid Systems
  • References
  • 9 Ultrasonography
  • 9.1 Introduction
  • 9.2 Sound Properties
  • 9.2.1 Intensity and Pressure
  • 9.2.2 Velocity
  • 9.2.3 Attenuation
  • 9.3 Transducers
  • 9.3.1 Piezoelectric Effect
  • 9.3.2 Transducer Design
  • 9.3.3 Transducer Frequency Response
  • 9.4 Ultrasound Beam
  • 9.4.1 Resolution
  • 9.4.2 Multiple-Element Transducer Function
  • 9.5 Ultrasound Imaging
  • 9.5.1 Acquisition Modes
  • 9.6 Doppler
  • 9.6.1 Image Formation
  • 9.6.2 Signal Processing
  • 9.7 Artifacts
  • 9.7.1 Path Length Errors
  • 9.7.2 Velocity Errors
  • 9.7.3 Attenuation Errors
  • 9.7.4 Beam Characteristic Errors
  • 9.8 Therapeutic Use and Bioeffects
  • References
  • 10 Magnetic Resonance Imaging
  • 10.1 Introduction
  • 10.2 Fundamentals of Magnetic Resonance
  • 10.2.1 Quantum Mechanical Interpretation
  • 10.2.2 Interaction of Nuclei with a Static Magnetic Field
  • 10.2.3 Bulk Magnetization
  • 10.2.4 Interaction of Nuclei with a Radio-Frequency Wave
  • 10.2.5 Induction of a Magnetic Resonance Signal in a Coil
  • 10.2.6 Relaxation Processes: T1 and T2
  • 10.3 Magnetic Resonance Imaging as a Probe of the Body
  • 10.3.1 Spatial Encoding of Magnetic Resonance Imaging Signal
  • 10.3.2 Two-Dimensional Fourier Transform (2DFT) Imaging
  • 10.4 Magnetic Resonance Image Contrast
  • 10.4.1 Modifications to the Standard Spin Echo Sequence
  • 10.5 Magnetic Resonance Imaging and Flow
  • 10.5.1 Time-of-Flight Effects of Flowing Blood
  • 10.5.2 Phase Effects of Flowing Blood
  • 10.6 k Space
  • 10.6.1 General Properties of k Space
  • 10.6.2 Fast Spin Echo
  • 10.6.3 Fast Gradient Echo
  • 10.6.4 Three-Dimensional Fourier Transform (3DFT) Imaging
  • 10.6.5 Echo Planar Imaging
  • 10.6.6 Other k Space Sampling Strategies
  • 10.6.7 Parallel Imaging
  • 10.7 Additional MRI Contrast Mechanisms
  • 10.7.1 Diffusion-Weighted Imaging (DWI)
  • 10.7.2 MR Perfusion
  • 10.7.3 Functional Magnetic Resonance Imaging (fMRI)
  • 10.8 Spectroscopy
  • 10.8.1 Water Suppression
  • 10.8.2 Spatial Localization
  • 10.9 Chemical Shift Imaging
  • 10.9.1 Fat/Water Imaging
  • 10.10 MRI Artifacts
  • 10.10.1 RF Field Modification
  • 10.10.2 Magnetic Field Modification
  • 10.10.3 Chemical Shift Artifacts
  • 10.10.4 Artifacts from Alteration of MR Signal Phase
  • 10.10.5 Modifying the Raw Data Matrix
  • 10.11 Bioeffects and MR Safety
  • 10.11.1 Static Magnetic Field
  • 10.11.2 Time-Varying Magnetic Fields
  • 10.11.3 FDA Guidelines
  • 10.11.4 Medical Implants
  • 10.11.5 Patient and Personnel Safety
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen