Microencapsulation and Microspheres for Food Applications

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 10. August 2015
  • |
  • 434 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-800418-0 (ISBN)
 

Microencapsulation and Microspheres for Food Applications is a solid reflection on the latest developments, challenges, and opportunities in this highly expanding field. This reference examines the various types of microspheres and microcapsules essential to those who need to develop stable and impermeable products at high acidic conditions. It's also important for the novel design of slow releasing active compound capsules.

Each chapter provides an in-depth account of controlled release technologies, evidence based abstracts, descriptions of chemical and physical principals, and key relevant facts relating to food applications. Written in an accessible manner, the book is a must have resource for scientists, researchers, and engineers.


  • Discusses the most current encapsulation technology applied in the food industry, including radiography, computed tomography, magnetic resonance imaging, and dynamic NMR microscopy
  • Presents the use of microsphere immunoassay for mycotoxins detection
  • Covers a broad range of applications of microcapsules and microspheres, including food shelf-life, pesticides for crop protection, and nanoencapsulated bacteriophage for food safety
  • Englisch
  • USA
Elsevier Science
  • 20,32 MB
978-0-12-800418-0 (9780128004180)
0128004185 (0128004185)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Microencapsulation and Microspheres for Food Applications
  • Copyright Page
  • Contents
  • List of Contributors
  • I. Microcapsules and Microspheres Produced for Application in Food
  • 1 Microcapsules Produced from Zein
  • 1.1 Introduction
  • 1.2 Zein Structure and Properties
  • 1.3 Core-Shell Formation
  • 1.4 Self-Assembly Phase Diagram
  • 1.5 Self-Assembly Mechanism
  • 1.6 Kinetics of Microsphere Growth
  • 1.7 Stabilization of Zein Particles
  • 1.8 Summary
  • References
  • 2 Microcapsules with Protein Fibril-Reinforced Shells
  • 2.1 Introduction
  • 2.2 Protein Fibrils
  • 2.3 Polysaccharides and Polysaccharide-Protein Complexes
  • 2.4 LbL Adsorption Process for Microcapsules with Nanocomposite Shell
  • 2.5 Structure and Properties of Nanocomposite Shells
  • 2.6 Conclusions
  • References
  • 3 Alginate Nanospheres Prepared by Internal or External Gelation with Nanoparticles
  • 3.1 Introduction
  • 3.2 Alginate
  • 3.3 Macroscopic Alginate Hydrogels
  • 3.3.1 Ionic Alginate Gels
  • 3.3.1.1 External gelation
  • 3.3.1.2 Internal gelation
  • 3.3.1.3 Thermal gelation
  • 3.3.2 Other Types of Alginate Gels
  • 3.4 Formation of Alginate (Micro)Spheres
  • 3.5 Alginate Nanoparticles
  • 3.5.1 Formation of Alginate Nanospheres
  • 3.5.1.1 Formation of alginate nanospheres by external gelation
  • 3.5.1.2 Formation of alginate nanospheres by internal gelation
  • 3.5.2 Properties and Functions
  • 3.5.3 Applications
  • 3.6 Concluding Remarks
  • References
  • 4 Cationic Starch Nanoparticles
  • 4.1 Introduction
  • 4.2 Preparation Methods of Cationic Starch Nanoparticles
  • 4.2.1 The Wet Process
  • 4.2.2 The Dry Process
  • 4.2.3 The Semi-Dry Process
  • 4.2.4 The Extrusion Process
  • 4.2.5 The Microwave Irradiation Process
  • 4.2.6 Other Processes
  • 4.3 Physicochemical Characterization of Cationic Starch Nanoparticles
  • 4.3.1 DS and RE
  • 4.3.2 1H NMR and 13C NMR Spectroscopy of Cationic Starch Nanoparticles
  • 4.3.3 FTIR Spectroscopy of Cationic Starch Nanoparticles
  • 4.3.4 XRD of Cationic Starch Nanoparticles
  • 4.3.5 The Morphology of Cationic Starch Nanoparticles
  • 4.4 The Properties of Cationic Starch Nanoparticles
  • 4.4.1 DS and RE of Cationic Starch Nanoparticles
  • 4.4.2 Pasting Properties of Cationic Starch Nanoparticles
  • 4.4.3 The Thermal Properties of Cationic Starch Nanoparticles
  • 4.4.4 Rheological Properties and Solubility of Cationic Starch Nanoparticles
  • 4.5 Applications
  • 4.6 Conclusions
  • Acknowledgments
  • References
  • 5 Nanoemulsion-Based Delivery Systems
  • 5.1 The Delivery of Bioactive Compounds in the Food Industry
  • 5.2 O/W Nanoemulsions
  • 5.3 Fabrication of O/W Nanoemulsions
  • 5.3.1 Top-Down Approaches
  • 5.3.2 Bottom-Up Approaches
  • 5.3.3 Mixed Approaches
  • 5.4 Uses and Applications of Nanoemulsions as Delivery Systems
  • 5.5 Conclusions and Perspectives
  • References
  • 6 Water-in-Oil-in-Water Nanoencapsulation Systems
  • 6.1 Introduction
  • 6.2 General Picture of a W/O/W Multiple Emulsion
  • 6.3 Major Production Processes and Phase Composition of W/O/W Multiple Emulsions
  • 6.3.1 Production Processes
  • 6.3.1.1 High-speed stirring/homogenization
  • 6.3.1.2 High-pressure homogenization
  • 6.3.1.3 Membrane emulsification
  • 6.3.2 Phase Composition
  • 6.3.2.1 Internal (discrete, inner cores) and external (continuous) aqueous phases
  • 6.3.2.2 Oily phase
  • 6.3.2.3 Fraction of dispersed primary W/O emulsion
  • 6.3.2.4 Emulsifiers
  • 6.4 Spontaneous Destabilization of W/O/W Multiple Emulsions
  • 6.4.1 Destabilization Phenomena of Simple Emulsions
  • 6.4.2 Coalescence Between the Internal (Discrete, Inner Core) and the External (Continuous) Aqueous Phases
  • 6.5 Stability Enhancement in W/O/W Multiple Emulsions
  • 6.5.1 Control of the Size of the Internal Aqueous Droplets
  • 6.5.2 Modification of the Oily Phase
  • 6.5.3 Solubilization of Macromolecules in the Internal Aqueous Phase
  • 6.5.4 Oily Droplet Stabilization in W/O/W Multiple Emulsions
  • 6.6 Physicochemical Characteristics of W/O/W Multiple Emulsions
  • 6.6.1 Hydrodynamic Size Distribution of Oily Droplets
  • 6.6.2 Entrapment Efficiency
  • 6.7 Kinetics of the Release of Water-Soluble Entities Entrapped in the (Internal) Aqueous Core of a W/O/W Multiple Emulsion
  • 6.8 Potential Practical Applications of W/O/W Multiple Emulsions
  • Acknowledgments
  • References
  • 7 Engineering Hydrogel Microspheres for Healthy and Tasty Foods
  • 7.1 Introduction
  • 7.2 Hydrogel Microsphere Ingredients
  • 7.2.1 Proteins
  • 7.2.2 Polysaccharides
  • 7.3 Principles of Hydrogel Microsphere Formation
  • 7.3.1 Attractive Interactions
  • 7.3.1.1 Single biopolymer
  • 7.3.1.2 Mixed biopolymers: complex coacervation
  • 7.3.2 Repulsive Interactions
  • 7.3.3 Shaping of Hydrogel Particles by Shearing
  • 7.4 Applications of Hydrogel Particles
  • 7.4.1 Texture Control
  • 7.4.2 Encapsulation of Functional Ingredients
  • 7.5 Conclusions
  • References
  • 8 Progress in Applications of Liposomes in Food Systems
  • 8.1 Introduction
  • 8.2 Definitions and Formation of Liposomes
  • 8.3 Preparation Methods
  • 8.4 Liposome Applications in Food Systems
  • 8.4.1 Anti-Oxidants
  • 8.4.2 Proteins, Peptides, and Enzymes
  • 8.4.3 Vitamins and Minerals
  • 8.4.4 Essential Fatty Acids
  • 8.5 Current Problems and Future Challenges
  • 8.5.1 Storage Stability
  • 8.5.2 Digestion Stability
  • References
  • II. Methods to Analyse Structure, Release Properties, and Stability
  • 9 Stability and Permeability of Microcapsules for Controlled Drug Delivery from Magnetic Resonance Microscopy
  • 9.1 Introduction
  • 9.2 Investigated Systems
  • 9.2.1 Alginate
  • 9.2.2 Pectin
  • 9.2.3 Shellac
  • 9.3 Capsule Preparation
  • 9.3.1 Materials
  • 9.3.2 Preparation Procedures
  • 9.4 MRI Techniques
  • 9.5 Structural Details of Capsule Membranes
  • 9.5.1 Membrane Thickness
  • 9.5.2 Capsule Shape
  • 9.6 Water Content and Dynamics within the Hydrogel
  • 9.6.1 Diffusion of Water within the Hydrogel
  • 9.6.2 Interaction Between Water and the Polysaccharide Framework
  • 9.7 Permeability of the Capsules
  • 9.7.1 Principle of Measurement
  • 9.7.2 Calibration of the Molecular Concentration
  • 9.7.3 Numerical Solution of Diffusion Equation
  • 9.7.4 Diffusion Constants
  • 9.8 Stability of the Capsules
  • 9.8.1 Methods
  • 9.8.2 Results
  • 9.9 Conclusion and Discussion
  • Acknowledgment
  • References
  • 10 Determination of Mechanical Properties of Microcapsules
  • 10.1 Introduction
  • 10.2 Colloidal Probe AFM
  • 10.3 Fluid Mechanics-Based Mechanical Characterization
  • 10.4 Osmotic Pressure Method
  • 10.5 Thermal Expansion-Based Method
  • 10.6 Summary
  • References
  • 11 Theoretical Modeling of Mechanical Behavior and Release Properties of Microcapsules
  • 11.1 Introduction
  • 11.2 Models for Microcapsule Shells
  • 11.3 Modeling of Microcapsule Dynamics
  • 11.3.1 Three-Dimensional Homogeneous Film Model
  • 11.3.2 Diffuse Interface Modeling
  • 11.3.3 Sharp Interface Modeling
  • 11.4 Basic Principles of Sharp Interface Modeling
  • 11.4.1 Surface Excess Variables
  • 11.4.2 Surface Balances
  • 11.4.3 Constitutive Equations for Fluxes Along and Across Simple Interfaces
  • 11.4.4 Constitutive Models for Complex Interfaces
  • 11.5 Examples of 2D Sharp Interface Modeling of Multiphase Systems
  • 11.6 Future Trends
  • References
  • III. Microencapsulation of Food Components
  • 12 Microencapsulation of Essential Oils Using Spray Drying Technology
  • 12.1 Introduction
  • 12.2 Essential Oils
  • 12.3 Spray Drying Process
  • 12.4 Microencapsulation by Spray Drying
  • 12.5 Wall Material Properties
  • 12.6 Volatile Component Retention
  • 12.7 Controlled Release of Microencapsulated Essential Oils
  • References
  • 13 Microencapsulation of Plant Oils Rich in Alpha-Linolenic Acid: Effect of Processing Parameters
  • 13.1 Introduction
  • 13.2 Health Benefits of Omega-3 Fatty Acids
  • 13.3 Microencapsulation
  • 13.4 Spray Drying
  • 13.4.1 Role of Emulsion Properties
  • 13.4.1.1 Wall Material
  • 13.4.1.2 Oil Loading
  • 13.4.1.3 Emulsification Method
  • 13.4.2 Role of Drying Parameters
  • 13.4.2.1 Temperature of Feed Solution
  • 13.4.2.2 Rate of Feed Solution
  • 13.4.2.3 Inlet and Outlet Air Temperature
  • 13.4.2.4 Type and Pressure of Atomizer
  • 13.4.2.5 Aspiration Rate
  • 13.4.3 Packaging and Storage
  • 13.5 Conclusions
  • References
  • 14 Food Applications of Microencapsulated Omega-3 Oils
  • List of Abbreviations
  • 14.1 Omega-3 Polyunsaturated Fatty Acids and Their Health Impact
  • 14.2 Omega-3 PUFAs: Animal and Vegetable Sources
  • 14.3 Oxidation of Omega-3 PUFAs
  • 14.4 Microencapsulation of ?-3 PUFAs: General Criteria
  • 14.5 Technologies for Microencapsulation of ?-3 PUFAs
  • 14.6 Food Applications of Microencapsulated ?-3 PUFAs
  • 14.6.1 Dairy Products
  • 14.6.2 Bread and Cereals
  • 14.6.3 Other Food Categories
  • 14.6.4 Animal Feed
  • 14.7 Bioavailability of Microencapsulated PUFAs
  • References
  • 15 Use of Microencapsulated Ingredients in Bakery Products: Technological and Nutritional Aspects
  • 15.1 Introduction
  • 15.2 Omega-3 Fatty Acids as Encapsulated Ingredients
  • 15.3 Use of Encapsulated Sodium Chloride Reduces HMF Formation in Bread
  • 15.4 Curcumin Encapsulation
  • 15.5 Microencapsulated Probiotics in Bakery Products
  • 15.6 Encapsulation in Bakery Products: Opportunities and Bottleneck
  • References
  • 16 Lipid Nanoparticles: Delivery System for Bioactive Food Compounds
  • 16.1 Introduction
  • 16.2 Characteristics of SLN
  • 16.2.1 Solid Lipid Nanoparticles
  • 16.2.2 Nanostructure Lipid Carriers
  • 16.3 SLN Production
  • 16.3.1 Formulation: Lipid Carrier and Emulsifier Composition
  • 16.3.1.1 Lipid carrier
  • 16.3.1.2 Surfactant or surfactant combination
  • 16.3.2 Processing Methods
  • 16.4 Bioavailability and Toxicity Aspects
  • 16.4.1 Bioavailability of Lipid NPs
  • 16.4.2 Safety Evaluation of NPs in the Food Sector
  • 16.4.3 Toxicity of Lipid NPs
  • 16.4.3.1 Presence of adjuvants used in product formulation
  • 16.4.3.2 Effect and modification of the NPs in the gastrointestinal tract
  • 16.4.4 NPs Toxicity Determination
  • 16.5 Application in Food Products
  • References
  • 17 Microencapsulation of Sweeteners
  • 17.1 Introduction
  • 17.2 Microencapsulation of Intense Sweeteners
  • 17.2.1 Acesulfame-K
  • 17.2.2 Aspartame
  • 17.2.3 Neotame
  • 17.2.4 Saccharin
  • 17.2.5 Stevioside
  • 17.2.6 Sucralose
  • 17.2.7 Thaumatin
  • 17.3 Microencapsulation of Bulk Sweeteners
  • Acknowledgments
  • References
  • 18 Microencapsulation of Grape Seed Extracts
  • 18.1 Introduction
  • 18.2 Phenolic Compounds and Oil from Grape Seeds
  • 18.3 Microencapsulation: General Concepts
  • 18.4 GSE Microencapsulation
  • 18.5 Conclusions and Future Trends
  • Acknowledgments
  • References
  • 19 Microencapsulation of Natural Anti-Oxidant Pigments
  • 19.1 Introduction
  • 19.2 Microencapsulation
  • 19.2.1 Coating or Wall Materials
  • 19.2.2 Process of Microencapsulation
  • 19.3 Natural Anti-Oxidant Pigments
  • 19.3.1 Anthocyanins
  • 19.3.2 Carotenoids
  • 19.3.3 Betalains
  • 19.3.4 Chlorophyll
  • 19.3.5 Curcuminoids
  • 19.4 Conclusions
  • Acknowledgments
  • References
  • 20 Encapsulation of Probiotics in Milk Protein Microcapsules
  • 20.1 Introduction
  • 20.2 Encapsulation Techniques
  • 20.2.1 Spray Drying
  • 20.2.2 Extrusion
  • 20.2.3 Emulsification
  • 20.3 Microcapsule Characterization
  • 20.3.1 Structure
  • 20.3.2 Size and Shape
  • 20.3.3 Encapsulation Rate
  • 20.4 Influence of Dairy Matrix Nature on Processing and Storage
  • 20.4.1 Casein-Based Microcapsules
  • 20.4.2 Whey Protein-Based Microcapsules
  • 20.5 Influence of Dairy Matrices on Gastric and Intestinal Release
  • 20.6 Conclusion
  • References
  • Index

List of Contributors


Iñigo Arozarena,     Department of Food Technology, Ænoltec research group, Public University of Navarre, Pamplona, Spain

Victor M. Balcão

LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2-Intelligent Biosensing and Biomolecule Stabilization Research Group, University of Sorocaba, Sorocaba/SP, Brazil

CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal

Soraia Vilela Borges,     Food Science Department, Federal University of Lavras, Lavras-MG, Brazil

Diego Alvarenga Botrel,     Food Science Department, Federal University of Lavras, Lavras-MG, Brazil

Jennifer Burgain,     LIBio-Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France

Marco V. Chaud,     LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2-Intelligent Biosensing and Biomolecule Stabilization Research Group, University of Sorocaba, Sorocaba/SP, Brazil

Magda Corgneau,     LIBio-Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France

Ziortza Cruz,     AZTI-Tecnalia, Food Research Division, Derio, Spain

Gabriel Davidov-Pardo

Department of Food Technology, Ænoltec research group, Public University of Navarre, Pamplona, Spain

Department of Food Science, University of Massachusetts, Amherst, MA, USA

Anna Chiara De Prisco,     Department of Agriculture and Food Science, University of Naples "Federico II", Naples, Italy

Patrick Degen,     Physical Chemistry I, Ruhr University Bochum, Bochum, Germany

Francesco Donsì,     Department of Industrial Engineering, University of Salerno, Fisciano (SA), Italy

Milla Gabriela dos Santos,     Department of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil

Daniel Edelhoff,     Experimental Physics III, TU Dortmund University, Dortmund, Germany

Carmen Sílvia Favaro-Trindade,     Department of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil

Regiane Victória de Barros Fernandes,     Food Science Department, Federal University of Lavras, Lavras-MG, Brazil

Vincenzo Fogliano,     Food Quality and Design Group, Wageningen University & Research Centre, Wageningen, The Netherlands

Claire Gaiani,     LIBio-Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France

Gabriela Gallardo,     Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina

Chunmei Gao,     State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou, PR China

Carlos García-Estrada,     Instituto de Biotecnología de León (INBIOTEC), León, Spain

Cássia A. Glasser,     LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2-Intelligent Biosensing and Biomolecule Stabilization Research Group, University of Sorocaba, Sorocaba/SP, Brazil

Vural Gokmen,     Food Engineering Department, Hacettepe University, Ankara, Turkey

Lía V. Guardiola,     Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Stefan Henning,     Experimental Physics III, TU Dortmund University, Dortmund, Germany

Laura G. Hermida,     Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina

Mingzhu Liu,     State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou, PR China

Weilin Liu,     College of Food and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China

Zhen Liu,     Department of Polymer and Fiber Engineering, Auburn University, Auburn, AL, USA

Shaoyu Lü,     State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou, PR China

María R. Marin-Arroyo,     Department of Food Technology, Ænoltec research group, Public University of Navarre, Pamplona, Spain

Gian Luigi Mauriello,     Department of Agriculture and Food Science, University of Naples "Federico II", Naples, Italy

David Julian McClements,     Department of Food Science, University of Massachusetts, Amherst, MA, USA

Montserrat Navarro,     Department of Food Technology, Ænoltec research group, Public University of Navarre, Pamplona, Spain

Idoia Olabarrieta,     AZTI-Tecnalia, Food Research Division, Derio, Spain

Graciela W. Padua,     Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Jerome P. Paques,     Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands

Sandra Rainieri,     AZTI-Tecnalia, Food Research Division, Derio, Spain

Glaucia Aguiar Rocha-Selmi,     Department of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil

Leonard M.C. Sagis

Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands

ETH Zurich, Department of Materials, Polymer Physics, Zurich, Switzerland

Joël Scher,     LIBio-Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France

Mariarenata Sessa,     ProdAl scarl, University of Salerno, Fisciano (SA), Italy

Harjinder Singh,     Riddet Institute, Massey University, Palmerston North, New Zealand

Dieter Suter,     Experimental Physics III, TU Dortmund University, Dortmund, Germany

Ismail Tontul

Department of Food Engineering, Necmettin Erbakan University, Konya, Turkey

Department of Food Engineering, Akdeniz University, Antalya, Turkey

Ayhan Topuz,     Department of Food Engineering, Akdeniz University, Antalya, Turkey

Antonio Dario Troise

Department of Agriculture and Food Science, University of Naples "Federico II", Naples, Italy

Food Quality and Design Group, Wageningen University & Research Centre, Wageningen, The Netherlands

Marta M.D.C. Vila,     LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2-Intelligent...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok