Organic Nanoreactors

From Molecular to Supramolecular Organic Compounds
 
 
Elsevier Reference Monographs (Verlag)
  • 1. Auflage
  • |
  • erschienen am 28. März 2016
  • |
  • 584 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-801810-1 (ISBN)
 

Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds provides a unique overview of synthetic, porous organic compounds containing a cavity which can encapsulate one or more guest(s). Confined space within a nanoreactor can isolate the guest(s) from the bulk and effectively influence the reaction inside the nanoreactor. Naturally occurring enzymes are compelling catalysts for selective reactions as their three-dimensional structures build up clefts, caves, or niches in which the active site is located. Additionally, reactive sites carrying special functional groups allow only specific reagents to react in a particular way, to lead to specific enantiomers as products. Equipped with suitable functional groups, then, nanoreactors form a new class of biomimetic compounds, which have multiple important applications in the synthesis of nanomaterials, catalysis, enzyme immobilization, enzyme therapy, and more. This book addresses various synthetic, organic nanoreactors, updating the previous decade of research and examining recent advances in the topic for the first comprehensive overview of this exciting group of compounds, and their practical applications. Bringing in the Editor's experience in both academic research and industrial applications, Organic Nanoreactors focuses on the properties and applications of well-known as well as little-examined nanoreactor compounds and materials and includes brief overviews of synthetic routes and characterization methods.


  • Focuses on organic nanoreactor compounds for greater depth
  • Covers the molecular, supramolecular, and macromolecular perspectives
  • Compiles previous and current sources from this growing field in one unique reference
  • Provides brief overviews of synthetic routes and characterization methods
  • Englisch
  • San Diego
  • |
  • USA
  • 36,03 MB
978-0-12-801810-1 (9780128018101)
0128018100 (0128018100)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Chapter 1 - Introduction to Nanoreactors
  • 1 - Approaches to artificial enzymes
  • 2 - Nanoreactors
  • 2.1 - Nanoreactor Definition
  • 2.2 - Encapsulation Effects
  • 2.3 - Reaction Kinetics Inside Nanoreactors
  • 2.4 - Product Inhibition
  • 2.5 - Nanoreactor Classification
  • 2.5.1 - Natural or Synthetic Nanoreactors
  • 2.5.2 - Biological Nanoreactors
  • 2.5.3 - Self-Assembled Nanoreactors
  • 3 - Nanoreactor potential applications
  • 3.1 - Catalysis
  • 3.2 - Protection and Stabilization
  • 3.3 - Templating and Stabilizing of Nanomaterials
  • 3.4 - Polymer Science
  • 3.5 - Development of Nanomedicines
  • 3.6 - Sensors
  • 4 - Conclusions
  • References
  • Chapter 2 - Cyclodextrins as Porous Material for Catalysis
  • 1 - Cyclodextrins: a brief overview
  • 1.1 - Structure and Supramolecular Properties
  • 1.2 - CD-Based Polymers
  • 1.2.1 - Cross-Linked CD-Based Polymers
  • 1.2.2 - Linear CD-Based Polymers
  • 1.3 - Applications of CDs
  • 2 - CD-based polymers as mass-transfer promoters
  • 2.1 - Ester Hydrolysis
  • 2.2 - Nucleophilic Substitution
  • 2.3 - Oxidation
  • 2.4 - Aldol Condensation
  • 2.5 - Organometallic Catalysis
  • 3 - Imprinted CD-based polymers for catalysis
  • 3.1 - Wacker Oxidation
  • 3.2 - Oxidative Coupling
  • 3.2.1 - Naphthol Derivatives Homocoupling
  • 4 - CD-based nanosponges
  • 5 - Conclusions
  • References
  • Chapter 3 - The Use of Cucurbit[n]urils as Organic Nanoreactors
  • 1 - Introduction
  • 2 - Physical properties of cucurbit[n]urils
  • 3 - Host properties of cucurbit[n]urils
  • 3.1 - Cationic Guests
  • 3.2 - Neutral Guests
  • 3.3 - Other Guests
  • 4 - Effects of cucurbit[n]uril hosts on guest physical and structural properties
  • 4.1 - Effects of CB[n] Hosts on Guest Solubility
  • 4.2 - Effects of CB[n] Hosts on Guest Spectroscopic Properties
  • 4.3 - Effects of CB[n] Hosts on Guest Structure and Isomerization
  • 4.4 - Effects of CB[n] Hosts on Guest Aggregation
  • 5 - Effects of Cucurbit[n]urils on guest reactivity and chemical properties
  • 5.1 - CB[n] Nanoreactor Control of Guest Acidity
  • 5.2 - CB[n] Nanoreactor Control of Guest Electrochemical Properties
  • 5.3 - CB[n] Nanoreactors for Enhanced Reactant Solubility and Stability
  • 5.4 - CB[n] Nanoreactors for Reactant Geometry and Stereochemistry Control
  • 5.5 - CB[n] Nanoreactors for Reaction Templating
  • 5.6 - CB[n] Nanoreactors for Reaction Catalysis
  • 6 - Conclusions
  • References
  • Chapter 4 - Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers
  • 1 - Introduction
  • 2 - Synthesis and structure of calixarenes
  • 2.1 - Calixarenes and Thiacalixarenes
  • 2.2 - Calix[4]resorcinarenes and Pyrogallolarenes
  • 3 - Macromolecular catalysts based on macrocyclic receptors
  • 4 - Supramolecular catalysis by calixarenes
  • 5 - Supramolecular catalysis by metal complexes based on calixarenes
  • 6 - Supramolecular systems for controlled binding/isolation of organic molecules and biosubstrates
  • 7 - Conclusions
  • Acknowledgments
  • References
  • Chapter 5 - Carbon Nanotube Nanoreactors for Chemical Transformations
  • 1 - Introduction
  • 2 - Confinement effects inside carbon nanotubes
  • 2.1 - Electronic Effects
  • 2.2 - Surface and Cavity Effects
  • 2.2.1 - Diffusion and Concentration Gradients
  • 2.2.1.1 - Diffusion of Liquids
  • 2.2.1.2 - Diffusion of Gases
  • 2.2.1.3 - Concentration Gradients
  • 2.2.2 - Spatial Restriction and Stabilization
  • 2.3 - Combination of Effects
  • 3 - Characterization of confined species in carbon nanotubes
  • 4 - Synthesis of confined metal nanoparticles in carbon nanotubes
  • 4.1 - Wet Chemistry Method
  • 4.1.1 - Wet Impregnation From a Metallic Precursor Solution
  • 4.1.2 - Wet Impregnation From Preformed NPs Suspensions
  • 4.2 - Use of Melted Compounds
  • 4.3 - Use of Volatile Compounds
  • 4.4 - Use of Supercritical Medium
  • 4.5 - Simultaneous Growth of CNTs and Filling of the Inner Cavity
  • 5 - Chemical transformations inside carbon nanotubes
  • 5.1 - Noncatalytic Chemical Reactions
  • 5.2 - Catalytic Chemical Reaction
  • 5.2.1 - Gas-Phase Reactions
  • 5.2.1.1 - Fischer-Tropsch Synthesis
  • 5.2.1.2 - CO Preferential Oxidation
  • 5.2.1.3 - Other Reactions Involving CO
  • 5.2.1.4 - Oxygen Reduction Reaction
  • 5.2.1.5 - Other Gas-Phase Reactions
  • 5.2.2 - Liquid-Phase Reactions
  • 5.2.2.1 - Hydrogenation
  • 5.2.2.2 - Oxidation
  • 5.2.2.3 - Other Reactions
  • 6 - Summary
  • References
  • Chapter 6 - Dendrimers as Nanoreactors
  • 1 - Introduction to dendrimers
  • 1.1 - Dendrimers
  • 1.2 - Metallodendrimers
  • 2 - Nanoreactors
  • 3 - Dendrimers as nanoreactors
  • 3.1 - Dendrimer Cavity
  • 3.2 - Periphery of Dendrimers
  • 4 - Dendritic hosts
  • 5 - Dendritic nanoreactor effects on guest(s)
  • 5.1 - Dendritic Nanoreactor Effect on Solubility of Guest(s)
  • 5.2 - Dendritic Nanoreactor Effect on Biocompatibility of Guest(s)
  • 5.3 - Dendritic Nanoreactor Effect on Fluoresces of Guest(s)
  • 5.4 - Dendritic Nanoreactor and Guest Isomerization
  • 6 - Dendritic nanoreactors as templating and stabilizing agent
  • 6.1 - Stabilization and Templating of Metallic Nanoparticles
  • 6.1.1 - Stablizing and Templating of Monometallic Dendrimer-encapsulated Nanoparticles
  • 6.1.2 - Stabilizing and Templating of Bimetallic Dendrimer-Encapsulated Nanoparticles
  • 6.2 - Stabilization and Templating of Quantum Dots
  • 7 - Dendritic nanoreactor in catalysis
  • 7.1 - Representative Examples of Dendritic Catalysts
  • 8 - Dendritic nanoreactor in energy sector
  • 9 - Conclusions
  • References
  • Chapter 7 - Catalysis Within the Self-Assembled Resorcin[4]arene Hexamer
  • 1 - Catalysis within cavities
  • 1.1 - Hexamer of Resorcin[4]arene: Synthesis and Properties
  • 2 - Hexameric capsule as an inhibitor
  • 3 - Hexameric capsule as a supramolecular nanoreactor
  • 3.1 - Effects on Product Selectivity
  • 3.2 - Effects on Substrate Selectivity
  • 4 - Hexameric capsule as a catalyst
  • 4.1 - Hydrolysis and Hydration Reactions
  • 4.2 - C─C Bond-Forming Reactions
  • 4.3 - C-heteroatom Bond-Forming Reactions
  • 4.4 - Cyclization Reactions
  • 5 - Conclusions and future perspectives
  • References
  • Chapter 8 - The Varied Supramolecular Chemistry of Pyrogallol[4]arenes
  • 1 - Introduction
  • 2 - Pyrogallol[4]arene capsules
  • 3 - Pyrogallol[4]arene capsule-membrane interactions
  • 4 - Pyrogallol[4]arene membrane aggregation-planar bilayer studies
  • 5 - Pyrogallol[4]arene membrane aggregation-Langmuir trough studies
  • 6 - A MONC-based ion conducting channel
  • 7 - Solid-state structures of linear and branched pyrogallol[4]arenes
  • 8 - Pyrogallol[4]arene-based nanotubes
  • 9 - Tetra-3-pentylpyrogallol[4]arene-mediated ion transport
  • 10 - Conclusions
  • Acknowledgments
  • References
  • Chapter 9 - Supramolecular Coordination Cages as Nanoreactors
  • 1 - Introduction
  • 2 - M4L6 tetrahedral self-assembled capsules
  • 2.1 - Guest Encapsulation in M4L6 Cages
  • 2.2 - Guest Exchange Pathway in M4L6 Cages
  • 2.3 - Protection and Stabilization of Reactive Species
  • 2.3.1 - Stabilization of Diazonium and Tropylium Cations
  • 2.3.2 - Protection and Stabilization of Iminium Cations
  • 2.3.3 - Stabilization of P4 Molecules
  • 2.3.4 - Protective Environment in Diels-Alder Reaction
  • 2.3.5 - Encapsulation and Storage of SF6
  • 2.4 - Catalysis by M4L6 Cages
  • 2.4.1 - Hydrolysis
  • 2.4.2 - Aza-Cope Rearrangement
  • 2.4.3 - Nazarov Cyclization
  • 2.4.4 - Hydroalkoxylation of Allene
  • 2.4.5 - Monoterpene Cyclization
  • 2.4.6 - Self-Organizing Chemical Assembly Line
  • 3 - Self-assembled capsules with two-dimensional ligands
  • 3.1 - Protection and Stabilization
  • 3.1.1 - Stabilization of Dinuclear Ruthenium Complexes
  • 3.1.2 - Protection of a Specific Reaction Site
  • 3.1.3 - Dye Sequestering
  • 3.1.4 - Stabilization of Coordinatively Unsaturated Transition-Metal Complex
  • 3.2 - Catalysis
  • 3.2.1 - Cavity-Directed Synthesis of Labile Silanol Oligomers
  • 3.2.2 - Photocleavage of a-Diketones
  • 3.2.3 - Knoevenagel Condensation
  • 3.2.4 - Highly Stereoselective [2 + 2] Photodimerization of Olefins
  • 3.2.5 - Diels-Alder Reactions of Inert Aromatic Compounds
  • 3.2.6 - Alkane Oxidation
  • 3.2.7 - Photo-driven Anti-Markovnikov Alkyne Hydration
  • 3.2.8 - Photomediated 1,4-Radical Addition to o-quinones
  • 3.2.9 - Unusual Photoreaction of Triquinacene
  • 3.2.10 - Cavity-Directed Chromism of Dye
  • 4 - Giant self-assembled MnL2n spherical complexes
  • 4.1 - Guest Encapsulation in Spherical Complexes
  • 4.2 - Solubility Enhancement by Using Spherical Complexes
  • 4.3 - Cavity-Templated Synthesis
  • 4.3.1 - Polymerization
  • 4.3.2 - Templating Synthesis of Nanoparticles
  • 5 - Miscellaneous Coordination Cages
  • 6 - Conclusions
  • References
  • Chapter 10 - Metal Organic Frameworks as Nanoreactors and Host Matrices for Encapsulation
  • 1 - Introduction
  • 2 - Virtues and limitations of MOFs as host matrices and nanoreactors
  • 3 - MOFs as nanoreactors
  • 4 - MOFs as host matrices for encapsulation
  • 4.1 - Methods of Encapsulation
  • 4.1.1 - Assembly of Preadsorbed Precursors
  • 4.1.2 - Templated Growth
  • 4.1.3 - Encapsulation Through Dissociative Linker Exchange
  • 4.2 - Catalytic Species Encapsulated in MOFs
  • 4.2.1 - Metal Nanoparticles
  • 4.2.2 - Organic and Metal Coordination Compounds
  • 4.2.3 - Peptides and Proteins
  • 4.2.4 - Quantum Dots
  • 4.3 - The Benefits of Encapsulation for Catalysis
  • 4.3.1 - Increased Stability and Avoidance of Self-Deactivation/Aggregation
  • 4.3.2 - Shape-Selective Heterogeneous Catalysts
  • 4.3.3 - Multifunctional Heterogeneous Catalysts
  • 5 Conclusions and perspectives
  • Acknowledgments
  • References
  • Chapter 11 - Bionanoreactors: From Confined Reaction Spaces to Artificial Organelles
  • 1 - Introduction
  • 2 - Polymers as building blocks for nanoreactors
  • 3 - 3D polymer supramolecular assemblies
  • 3.1 - Supramolecular Structures as Spaces for the Generation of Nanoreactors
  • 3.1.1 - Dendrimer Structures
  • 3.1.2 - Polymeric Vesicles (Polymersomes)
  • 3.1.3 - PICsomes
  • 3.1.4 - LbL Capsules
  • 3.2 - Accessibility of 3D Polymer Supramolecular Assemblies
  • 3.3 - Encapsulation/Insertion of Active Compounds: Design of Bionanoreactors
  • 3.4 - Activity and Stability of 3D Nanoarchitectures
  • 3.5 - Multicompartment Structures
  • 3.6 - Requirements for Various Applications of Nanoreactors
  • 4 - Applications of nanoreactors
  • 4.1 - Diagnostic Applications
  • 4.2 - Therapeutic Applications
  • 5 - Conclusions
  • References
  • Chapter 12 - Supercritical Fluids in Nanoreactor Technology
  • Abbreviations
  • 1 - The critical point and supercritical fluids
  • 1.1 - Properties of Supercritical Fluids
  • 2 - Microemulsions
  • 2.1 - Introduction
  • 2.2 - SCF-Continuous Microemulsions
  • 2.3 - SCF-Continuous Microemulsions Applications as Nanoreactors
  • 2.3.1 - Formation of Nanoparticles in SCF-Continuous Microemulsions
  • 2.3.2 - Chemical Reactions in Water-in-SCF Microemulsions
  • 2.3.3 - Enzyme-Catalyzed Transformations Within Microemulsions Formed in Supercritical Fluids
  • 2.3.4 - Microemulsion Polymerization in Supercritical Fluids
  • 3 - Nanotubes
  • 3.1 - Introduction
  • 3.2 - The Potential Benefits of Filling Nanotubes With Supercritical Fluids
  • 3.2.1 - Filling Nanotubes With Thermally Unstable Materials
  • 3.2.2 - Filling the Guest Molecules With Different Structures Into Nanotubes
  • 3.3 - Filling Nanotubes With Different Supercritical Fluids
  • 3.4 - Nanotubes' Applications as Nanoreactors
  • 3.4.1 - Nanomaterials Synthesis
  • 3.4.2 - Polymerization
  • 3.4.3 - Catalytic Reactions Within Nanotubes
  • 4 - Conclusions
  • Acknowledgments
  • References
  • Chapter 13 - Pyrene: The Guest of Honor
  • 1 - Introduction
  • 1.1 - Scope
  • 1.2 - Pyrene: Structure and Characterization
  • 1.3 - Binding Constants in a Nutshell
  • 2 - Techniques used to study host-pyrene interactions in solution
  • 2.1 - Introduction
  • 2.2 - UV-vis Spectroscopy
  • 2.3 - Fluorescence Spectroscopy
  • 2.4 - NMR Spectroscopy and Diffusion Coefficients
  • 3 - Pyrene and organic supramolecular hosts
  • 3.1 - A Brief History and Some Examples of Organic Host Species
  • 3.2 - Pyrene-Cavitand Interactions
  • 3.3 - Pyrene-containing Receptors: The Particular Case of Pillar[n]arenes
  • 4 - Pyrene and nanoscale hosts
  • 4.1 - Coordination-Driven Self-Assembly and Metalla-Assemblies
  • 4.2 - Metal-Based Nanoparticles and Metal Organic Frameworks
  • 4.3 - Nanoparticles Made of Polymers and Micelles
  • 5 - Conclusions and closing remarks
  • Acknowledgments
  • References
  • Chapter 14 - Nanoreactors Based on Porphyrin-Functionalized Carbon Compounds
  • 1 - Introduction
  • 1.1 - Graphene- and Graphene Oxide-Porphyrin Nanoreactors
  • 1.1.1 - Electrochemical Nanoreactors
  • 1.1.2 - Photochemical Nanoreactors
  • 1.1.3 - Sensors
  • 1.1.4 - Biosensors
  • 1.1.5 - Diagnostic and Therapeutic Applications
  • 1.2 - Carbon Nanotubes-Porphyrin Nanoreactors
  • 1.2.1 - Catalysis and Biocatalysis
  • 1.2.2 - Electrochemical Nanoreactors
  • 1.2.3 - Sensors
  • 1.2.4 - Biosensors
  • 1.2.5 - Diagnostic and Therapeutic Applications
  • 1.3 - Fullerene Nanoreactors
  • 2 - Conclusions
  • Abbreviations
  • References
  • Chapter 15 - Therapeutic Nanoreactors: Toward a Better Blood Substitute
  • 1 - Nanoreactors in biology and medicine
  • 2 - Need for blood substitutes
  • 3 - Blood substitute materials
  • 4 - Designing a better blood substitute
  • 5 - Retrievable nanoreactor blood substitutes
  • 6 - Performance of retrievable nanoreactor blood substitutes
  • 7 - Summary
  • Acknowledgments
  • References
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok