New Polymers for Encapsulation of Nutraceutical Compounds

 
 
Standards Information Network (Verlag)
  • erschienen am 12. Dezember 2016
  • |
  • 352 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-22881-3 (ISBN)
 
The incorporation of functional ingredients in a given food system and the processing and handling of such foods are associated with nutritional challenges for their healthy delivery. The extreme sensitivity of some components cause significant loss of product quality, stability, nutritional value and bioavailability, and the overall acceptability of the food product. Consequently, encapsulation has been successfully used to improve stability and bioavailability of functional ingredients. Encapsulation is one example of technology that has the potential to meet the challenge of successfully incorporating and delivering functional ingredients into a range of food types. The book will cover topics about 1) Characterization of novel polymers and their use in encapsulation processes. 2) Stability of nutraceutical compounds encapsulated with novel polymers. 3) Application of encapsulated compounds with novel polymers in functional food systems. This book provides a detailed overview of technologies for preparing and characterisation of encapsulates for food active ingredients using modified polymers. The use of modified polymers as coating materials it is a field that still needs study. The book is aimed to inform students and researchers in the areas of food science and food technology, and professionals in the food industry.
weitere Ausgaben werden ermittelt
Jorge Carlos Ruiz Ruiz, Professor-researcher, Division de Estudios de Posgrado e Investigacion, Instituto Tenologico de Merida, Yucatan, Mexico. Maira Rubi Segura Campos,Professor-researcher. Facultad de Ingenieria Quimica, Universidad Autonoma de Yucatan.
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • Topic 1 Characterization of modified polymers and their use in encapsulation processes
  • Chapter 1 Tailor-made novel polymers for hydrogel encapsulation processes
  • 1.1 Introduction
  • 1.2 Well-known and commonly used polymers
  • 1.2.1 Carbohydrate polymers
  • 1.2.2 Proteins
  • 1.3 Novel polymers
  • 1.3.1 Zein
  • 1.3.1.1 Origin and structure
  • 1.3.1.2 Properties
  • 1.3.1.3 Application of zein in the encapsulation process
  • 1.3.2 Inulin
  • 1.3.2.1 Origin and structure
  • 1.3.2.2 Properties
  • 1.3.2.3 Application in the encapsulation process
  • 1.3.3 Angum gum
  • 1.3.3.1 Origin and structure
  • 1.3.3.2 Properties and application in the encapsulation process
  • 1.3.4 Opuntia ficus-indica
  • 1.3.4.1 Origin and structure of mucilage
  • 1.3.4.2 Properties and application of mucilage in the encapsulation process
  • 1.3.5 Shellac
  • 1.3.5.1 Origin and structure
  • 1.3.5.2 Properties
  • 1.3.5.3 Application in the encapsulation process
  • Acknowledgments
  • References
  • Chapter 2 High-pressure-treated corn starch as an alternative carrier of molecules of nutritional interest for food systems
  • 2.1 Introduction
  • 2.2 Trends in nutraceutical foods
  • 2.2.1 Natural antioxidants from yerba mate extracts
  • 2.2.2 Micronutrients: Magnesium and zinc
  • 2.3 Starch as a carrier for bioactive compounds
  • 2.3.1 Starches treated by high-hydrostatic-pressure technology
  • 2.3.2 Morphology of corn starch carriers
  • 2.3.3 Porosity characteristics of treated starch granules
  • 2.3.4 Gelatinization properties after high-hydrostatic-pressure treatment
  • 2.3.5 Crystalline structure of starch granules affected by high pressure
  • 2.3.6 Loading of active compounds in bioactive starches
  • 2.4 Conclusions
  • References
  • Chapter 3 Protein-based nanoparticles as matrices for encapsulation of lipophilic nutraceuticals
  • 3.1 General aspects of encapsulating lipophilic nutraceuticals
  • 3.2 Polyunsaturated fatty acid encapsulation systems
  • 3.2.1 Native globular proteins as carriers of polyunsaturated fatty acids
  • 3.2.2 Protein aggregates as carriers of polyunsaturated fatty acids
  • 3.2.3 Biopolymer nanoparticles as carriers of polyunsaturated fatty acids
  • 3.3 Conclusions
  • Acknowledgments
  • References
  • Chapter 4 Surface modifications that benefit protein-based nanoparticles as vehicles for oral delivery of phenolic phytochemicals
  • 4.1 Overview
  • 4.2 Fabrication of protein-based nanoparticles
  • 4.2.1 Desolvation method
  • 4.2.2 Heating gelation
  • 4.2.3 Self-assembly
  • 4.3 Obstacles to protein-based nanoparticles as oral delivery vehicles
  • 4.3.1 Physiology of the gastrointestinal tract
  • 4.3.2 pH effect
  • 4.3.3 Ionic strength effect
  • 4.3.4 Digestive enzyme effect
  • 4.3.5 Mucus barriers
  • 4.4 Surface modifications of protein-based nanoparticles for better delivery
  • 4.4.1 Noncovalent coating
  • 4.4.1.1 Chitosan
  • 4.4.1.2 Polylysine
  • 4.4.1.3 d-a-Tocopheryl polyethylene glycol succinate
  • 4.4.2 Covalent conjugation
  • 4.4.2.1 Dextran
  • 4.4.2.2 Polyethylene glycol
  • 4.4.2.3 Folate
  • 4.5 Summary
  • References
  • Topic 2 Stability of nutraceutical compounds encapsulated with modified polymers
  • Chapter 5 Novel polymer systems and additives to protect bioactive substances applied in spray-drying
  • 5.1 Introduction
  • 5.2 Spray-drying process
  • 5.2.1 Preparation of feed solution
  • 5.2.2 Carriers
  • 5.2.3 Atomization
  • 5.2.4 Drying medium, evaporation of solvent, and separation of product
  • 5.2.5 Properties of the product
  • 5.3 Nutraceuticals in the food industry
  • 5.4 Polymers and novel polymers used in the spray-drying process
  • 5.4.1 Well-known polymers
  • 5.4.1.1 Maltodextrins
  • 5.4.1.2 Gum arabic
  • 5.4.1.3 Skim milk powder and whey proteins
  • 5.4.1.4 Modified starch
  • 5.4.2 Novel polymers and mixtures of polymers
  • 5.4.2.1 Natural fibers: Inulin and ß-glucan
  • 5.4.2.2 Pectin and its mixtures
  • Acknowledgements
  • References
  • Chapter 6 The use of encapsulation to guarantee the stability of phenolic compounds
  • 6.1 Introduction
  • 6.2 Phenolic compounds
  • 6.2.1 Stability and bioavailability of free phenolic compounds
  • 6.2.2 Factors leading to degradation of phenolic compounds
  • 6.3 Microencapsulation process
  • 6.3.1 Techniques and materials used to encapsulate phenolic compounds
  • 6.3.2 Controlled release and targeted delivery
  • 6.4 Concluding remarks and future perspectives
  • References
  • Chapter 7 Fortification of dairy products by microcapsules of polyphenols extracted from pomegranate peels
  • 7.1 Extraction procedure
  • 7.1.1 Determining total polyphenol content
  • 7.1.2 DPPH radical-scavenging activity
  • 7.2 Formulation of pomegranate peels' polyphenol microbeads and their in vitro release
  • 7.2.1 Capsule formulation
  • 7.2.2 Loading efficiency
  • 7.2.3 Optimization of loading efficiency
  • 7.2.3.1 Sodium alginate concentration
  • 7.2.3.2 Calcium chloride concentration
  • 7.2.3.3 Calcium chloride exposure time
  • 7.2.3.4 Gelling bath time
  • 7.2.4 Preparation of beads with sodium alginate and pectin blend
  • 7.2.5 In vitro dissolution studies
  • 7.3 Fortification of dairy products with polyphenol microcapsules
  • 7.3.1 Shelf life of milk beverages
  • 7.3.2 In vitro digestibility assay
  • References
  • Topic 3 Application of encapsulated compounds with modified polymers in functional food systems
  • Chapter 8 Encapsulation technologies for resveratrol in functional food
  • 8.1 Introduction
  • 8.2 Functional foods
  • 8.3 Resveratrol
  • 8.4 Encapsulation technology
  • 8.5 Microencapsulation
  • 8.5.1 Single-emulsion droplet
  • 8.5.2 Double-emulsion droplets
  • 8.5.3 Cyclodextrins
  • 8.5.4 Niosomes
  • 8.6 Nanoencapsulation
  • 8.6.1 Solid-based nanoparticle delivery systems
  • 8.6.1.1 Solid lipid nanoparticles
  • 8.6.1.2 Nanostructured lipid carriers
  • 8.6.1.3 Lipid-core nanocapsules
  • 8.6.1.4 Polymeric nanoparticles
  • 8.6.1.5 Cyclodextrins
  • 8.6.2 Liquid-based nanoparticle delivery systems
  • 8.6.2.1 Liposomes
  • 8.6.2.2 Niosomes
  • 8.6.2.3 Nanoemulsions
  • 8.7 Conclusions
  • References
  • Chapter 9 Nutraceutical compounds encapsulated by extrusion-spheronization
  • 9.1 Extrusion-spheronization process application for nutraceuticals
  • 9.1.1 Pellets
  • 9.1.2 General description of the extrusion-spheronization process (wet-mass extrusion)
  • 9.1.3 Process and equipment
  • 9.1.3.1 Dry mixing and wet granulation
  • 9.1.3.2 Extrusion
  • 9.1.3.3 Spheronization
  • 9.1.3.4 Drying
  • 9.1.3.5 Screening
  • 9.1.4 Formulation
  • 9.1.4.1 Microcrystalline cellulose as a spheronization aid
  • 9.1.4.2 Alternative excipients for microcrystalline cellulose
  • 9.1.4.3 Use of other excipients in the extrusion-spheronization process
  • 9.1.5 Evaluation of pellets
  • 9.2 Nanoemulsions for nutraceutical applications
  • 9.2.1 Introduction
  • 9.2.2 Method
  • 9.2.2.1 High-energy approaches
  • 9.2.2.2 Low-energy approaches
  • 9.2.3 Materials used in nanoemulsions production
  • 9.3 Nano-size nutraceutical emulsion encapsulated by extrusion-spheronization
  • 9.3.1 Objective of experimental design
  • 9.3.2 Daily dosage of nutraceuticals
  • 9.3.3 Material and methods to prepare nano-size nutraceutical emulsions encapsulated by extrusion-spheronization
  • 9.3.3.1 Materials and methods
  • 9.3.3.2 Results and discussion
  • 9.4 Conclusion
  • References
  • Chapter 10 Biopolymeric archetypes for the oral delivery of nutraceuticals
  • 10.1 Introduction
  • 10.2 Monolithic matrix-based systems
  • 10.2.1 Compressed tablet systems
  • 10.2.2 Hydrogels
  • 10.2.3 Protein films
  • 10.2.4 Formulation coatings
  • 10.3 Encapsulated systems
  • 10.3.1 Bead-like conformations
  • 10.3.2 Microencapsulated systems
  • 10.3.3 Nanoencapsulated systems: Nanoparticles and nanocapsules
  • 10.4 Conclusion
  • Acknowledgments
  • References
  • Chapter 11 Application of microencapsulated vitamins in functional food systems
  • 11.1 Introduction
  • 11.2 Common microencapsulation techniques for vitamins
  • 11.3 Applications of incorporating encapsulated vitamins in dairy products
  • 11.3.1 Application in cheese
  • 11.3.2 Application in yogurt
  • 11.3.3 Application in ice cream
  • 11.4 Application of microencapsulated vitamins in beverages
  • 11.5 Application of encapsulated vitamins in bakery products
  • 11.6 Conclusions
  • References
  • Chapter 12 Application of encapsulated compounds in functional food systems
  • 12.1 Introduction
  • 12.2 Microencapsulation technologies and bioactive food ingredients
  • 12.2.1 Nonmicrobial products
  • 12.2.2 Microbial products
  • 12.3 Delivery of bioactive ingredients into foods and to the gastrointestinal tract
  • 12.3.1 Microbial-containing products
  • 12.3.2 Nonmicrobial products
  • 12.4 Techniques of microencapsulation
  • 12.4.1 Emulsion polymerization
  • 12.4.2 Interfacial polycondensation
  • 12.4.3 Suspension cross-linking
  • 12.4.4 Solvent extraction
  • 12.4.5 Phase separation
  • 12.4.6 Emulsification
  • 12.4.7 Coacervation
  • 12.4.8 Spray-drying
  • 12.4.9 Spray-cooling
  • 12.4.10 Fluid-bed coating
  • 12.4.11 Extrusion technologies
  • 12.5 Materials used for encapsulation
  • 12.6 Selection and safety evaluation of encapsulation materials
  • 12.7 Nutritional and nutraceutical compounds and microencapsulation
  • 12.7.1 Bioactive food components
  • 12.7.2 Antioxidants
  • 12.7.3 Minerals
  • 12.7.3.1 Iron
  • 12.7.3.2 Calcium fortification
  • 12.7.3.3 Vitamins
  • 12.7.3.4 Polyunsaturated fatty acids
  • 12.7.4 Polyphenols and carotenoids
  • 12.7.5 Living bioactive food components
  • 12.8 Spray-drying in microencapsulation of food ingredients
  • 12.8.1 Food ingredients microencapsulated by spray-drying
  • 12.8.1.1 Lipids and oleoresins
  • 12.8.1.2 Flavoring compounds
  • 12.8.1.3 Other food ingredients
  • 12.9 Nanoencapsulation of food ingredients using lipid-based delivery systems
  • 12.9.1 Nanoemulsions
  • 12.9.2 Liposomes
  • 12.9.3 Solid lipid nanoparticles
  • 12.9.4 Nanostructure lipid carrier
  • 12.10 New techniques and ingredients that improve effectiveness of encapsulation
  • References
  • Chapter 13 Encapsulation of polyunsaturated omega-3 fatty acids for enriched functional foods
  • 13.1 Introduction
  • 13.2 Functional effects of omega-3 fatty acids
  • 13.3 Susceptibility to oxidation
  • 13.4 Methods for encapsulating oil
  • 13.5 Nonconventional wall materials for encapsulating oil
  • 13.5.1 Chitosan
  • 13.5.2 Pullulan
  • 13.5.3 Salvia hispanica mucilage
  • 13.5.4 Opuntia ficus-indica
  • 13.6 Properties of oil as omega-3 polyunsaturated fatty acids capsules
  • 13.7 Oxidation stability and fatty acid composition of encapsulated vegetable oils
  • 13.8 Incorporation of long-chain omega-3 polyunsaturated fatty acids in foods
  • 13.9 Conclusion
  • Acknowledgments
  • References
  • Index
  • EULA
Dewey Decimal Classfication (DDC)

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

137,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen