Molecular Plant Abiotic Stress

Biology and Biotechnology
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. Juni 2019
  • |
  • 480 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-46368-9 (ISBN)
 

A close examination of current research on abiotic stresses in various plant species

The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance.

Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book:

  • Covers a wide range of abiotic stresses in multiple plant species
  • Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species
  • Compiles the most recent research and up-to-date data on stress tolerance
  • Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances
  • Written and edited by prominent scientists and researchers from across the globe

Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.



Dr. Aryadeep Roychoudhury is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India.

Dr. Durgesh Kumar Tripathi is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh, India.

1. Auflage
  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 6,21 MB
978-1-119-46368-9 (9781119463689)
weitere Ausgaben werden ermittelt
Dr. Aryadeep Roychoudhury is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India.

Dr. Durgesh Kumar Tripathi is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh, India.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Chapter 1 Plant Tolerance to Environmental Stress: Translating Research from Lab to Land
  • 1.1 Introduction
  • 1.2 Drought Tolerance
  • 1.3 Cold Tolerance
  • 1.4 Salinity Tolerance
  • 1.5 Need for More Translational Research
  • 1.6 Conclusion
  • References
  • Chapter 2 Morphological and Anatomical Modifications of Plants for Environmental Stresses
  • 2.1 Introduction
  • 2.2 Drought-induced Adaptations
  • 2.3 Cold-induced Adaptations
  • 2.4 High Temperature-induced Adaptations
  • 2.5 UV-B-induced Morphogenic Responses
  • 2.6 Heavy Metal-induced Adaptations
  • 2.7 Roles of Auxin, Ethylene, and ROS
  • 2.8 Conclusion
  • References
  • Chapter 3 Stomatal Regulation as a Drought-tolerance Mechanism
  • 3.1 Introduction
  • 3.2 Stomatal Morphology
  • 3.3 Stomatal Movement Mechanism
  • 3.4 Drought Stress Sensing
  • 3.5 Drought Stress Signaling Pathways
  • 3.5.1 Hydraulic Signaling
  • 3.5.2 Chemical Signaling
  • 3.5.2.1 Plant Hormones
  • 3.5.3 Nonhormonal Molecules
  • 3.5.3.1 Role of CO2 Molecule in Response to Drought Stress
  • 3.5.3.2 Role of Ca2+ Molecules in Response to Drought Stress
  • 3.5.3.3 Protein Kinase Involved in Osmotic Stress Signaling Pathway
  • 3.5.3.4 Phospholipid Role in Signal Transduction in Response to Drought Stress
  • 3.6 Mechanisms of Plant Response to Stress
  • 3.7 Stomatal Density Variation in Response to Stress
  • 3.8 Conclusion
  • References
  • Chapter 4 Antioxidative Machinery for Redox Homeostasis During Abiotic Stress
  • 4.1 Introduction
  • 4.2 Reactive Oxygen Species
  • 4.2.1 Types of Reactive Oxygen Species
  • 4.2.1.1 Superoxide Radical (O2·-)
  • 4.2.1.2 Singlet Oxygen (1O2)
  • 4.2.1.3 Hydrogen Peroxide (H2O2)
  • 4.2.1.4 Hydroxyl Radicals (OH·)
  • 4.2.2 Sites of ROS Generation
  • 4.2.2.1 Chloroplasts
  • 4.2.2.2 Peroxisomes
  • 4.2.2.3 Mitochondria
  • 4.2.3 ROS and Oxidative Damage to Biomolecules
  • 4.2.4 Role of ROS as Messengers
  • 4.3 Antioxidative Defense System in Plants
  • 4.3.1 Nonenzymatic Components of the Antioxidative Defense System
  • 4.3.1.1 Ascorbate
  • 4.3.1.2 Glutathione
  • 4.3.1.3 Tocopherols
  • 4.3.1.4 Carotenoids
  • 4.3.1.5 Phenolics
  • 4.3.2 Enzymatic Components
  • 4.3.2.1 Superoxide Dismutases
  • 4.3.2.2 Catalases
  • 4.3.2.3 Peroxidases
  • 4.3.2.4 Enzymes of the Ascorbate-Glutathione Cycle
  • 4.3.2.5 Monodehydroascorbate Reductase
  • 4.3.2.6 Dehydroascorbate Reductase
  • 4.3.2.7 Glutathione Reductase
  • 4.4 Redox Homeostasis in Plants
  • 4.5 Conclusion
  • References
  • Chapter 5 Osmolytes and their Role in Abiotic Stress Tolerance in Plants
  • 5.1 Introduction
  • 5.2 Osmolyte Accumulation is a Universally Conserved Quick Response During Abiotic Stress
  • 5.3 Osmolytes Minimize Toxic Effects of Abiotic Stresses in Plants
  • 5.4 Stress Signaling Pathways Regulate Osmolyte Accumulation Under Abiotic Stress Conditions
  • 5.5 Metabolic Pathway Engineering of Osmolyte Biosynthesis Can Generate Improved Abiotic Stress Tolerance in Transgenic Crop Plants
  • 5.6 Conclusion and Future Perspectives
  • Acknowledgements
  • References
  • Chapter 6 Elicitor-mediated Amelioration of Abiotic Stress in Plants
  • 6.1 Introduction
  • 6.2 Plant Hormones and Other Elicitor-mediated Abiotic Stress Tolerance in Plants
  • 6.3 PGPR-mediated Abiotic Stress Tolerance in Plants
  • 6.4 Signaling Role of Nitric Oxide in Abiotic Stresses
  • 6.5 Future Goals
  • 6.6 Conclusion
  • References
  • Chapter 7 Role of Selenium in Plants Against Abiotic Stresses: Phenological and Molecular Aspects
  • 7.1 Introduction
  • 7.2 Se Bioaccumulation and Metabolism in Plants
  • 7.3 Physiological Roles of Se
  • 7.3.1 Se as Plant Growth Promoters
  • 7.3.2 The Antioxidant Properties of Se
  • 7.4 Se Ameliorating Abiotic Stresses in Plants
  • 7.4.1 Se and Salt Stress
  • 7.4.2 Se and Drought Stress
  • 7.4.3 Se Counteracting Low-temperature Stress
  • 7.4.4 Se Ameliorating the Effects of UV-B Irradiation
  • 7.4.5 Se and Heavy Metal Stress
  • 7.5 Conclusion
  • 7.6 Future Perspectives
  • References
  • Chapter 8 Polyamines Ameliorate Oxidative Stress by Regulating Antioxidant Systems and Interacting with Plant Growth Regulators
  • 8.1 Introduction
  • 8.2 PAs as Cellular Antioxidants
  • 8.2.1 PAs Scavenge Reactive Oxygen Species
  • 8.2.2 The Co-operative Biosynthesis of PAs and Proline
  • 8.3 The Relationship Between PAs and Growth Regulators
  • 8.3.1 Brassinosteroids and PAs
  • 8.3.2 Ethylene and PAs
  • 8.3.3 Salicylic Acid and PAs
  • 8.3.4 Abscisic Acid and PAs
  • 8.4 Conclusion and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 9 Abscisic Acid in Abiotic Stress-responsive Gene Expression
  • 9.1 Introduction
  • 9.2 Deep Evolutionary Roots
  • 9.3 ABA Chemical Structure, Biosynthesis, and Metabolism
  • 9.4 ABA Perception and Signaling
  • 9.5 ABA Regulation of Gene Expression
  • 9.5.1 Cis-regulatory Elements
  • 9.5.2 Transcription Factors Involved in the ABA-Mediated Abiotic Stress Response
  • 9.5.2.1 bZIP Family
  • 9.5.2.2 MYC and MYB
  • 9.5.2.3 NAC Family
  • 9.5.2.4 AP2/ERF Family
  • 9.5.2.5 Zinc Finger Family
  • 9.6 Post-transcriptional and Post-translational Control in Regulating ABA Response
  • 9.7 Epigenetic Regulation of ABA Response
  • 9.8 Conclusion
  • References
  • Chapter 10 Abiotic Stress Management in Plants: Role of Ethylene
  • 10.1 Introduction
  • 10.2 Ethylene: Abundance, Biosynthesis, Signaling, and Functions
  • 10.3 Abiotic Stress and Ethylene Biosynthesis
  • 10.4 Role of Ethylene in Photosynthesis Under Abiotic Stress
  • 10.5 Role of Ethylene on ROS and Antioxidative System Under Abiotic Stress
  • 10.6 Conclusion
  • References
  • Chapter 11 Crosstalk Among Phytohormone Signaling Pathways During Abiotic Stress
  • 11.1 Introduction
  • 11.2 Phytohormone Crosstalk Phenomenon and its Necessity
  • 11.3 Various Phytohormonal Crosstalk Under Abiotic Stresses for Improving Stress Tolerance
  • 11.3.1 Crosstalk Between ABA and GA
  • 11.3.2 Crosstalk Between GA and ET
  • 11.3.3 Crosstalk Between ABA and ET
  • 11.3.4 Crosstalk Between ABA and Auxins
  • 11.3.5 Crosstalk Between ET and Auxins
  • 11.3.6 Crosstalk Between ABA and CTs
  • 11.4 Conclusion and Future Directions
  • Acknowledgements
  • References
  • Chapter 12 Plant Molecular Chaperones: Structural Organization and their Roles in Abiotic Stress Tolerance
  • 12.1 Introduction
  • 12.2 Classification of Plant HSPs
  • 12.2.1 Structure and Functions of sHSP Family
  • 12.2.2 Structure and Functions of HSP60 Family
  • 12.2.3 Structure and Functions of the HSP70 Family
  • 12.2.3.1 DnaJ/HSP40
  • 12.2.4 Structure and Functions of HSP90 Family
  • 12.2.5 Structure and Functions of HSP100 Family
  • 12.3 Regulation of HSP Expression in Plants
  • 12.4 Crosstalk Between HSP Networks to Provide Tolerance Against Abiotic Stress
  • 12.5 Genetic Engineering of HSPs for Abiotic Stress Tolerance in Plants
  • 12.6 Conclusion
  • Acknowledgements
  • References
  • Chapter 13 Chloride (Cl-) Uptake, Transport, and Regulation in Plant Salt Tolerance
  • 13.1 Introduction
  • 13.2 Sources of Cl- Ion Contamination
  • 13.3 Role of Cl- in Plant Growth and Development
  • 13.4 Cl- Toxicity
  • 13.5 Interaction of Soil Cl- with Plant Tissues
  • 13.5.1 Cl- Influx from Soil to Root
  • 13.5.2 Mechanism of Cl- Efflux at the Membrane Level
  • 13.5.3 Differential Accumulation of Cl- in Plants and Compartmentalization
  • 13.6 Electrophysiological Study of Cl- Anion Channels in Plants
  • 13.7 Channels and Transporters Participating in Cl- Homeostasis
  • 13.7.1 Slow Anion Channel and Associated Homologs
  • 13.7.2 QUAC1 and Aluminum-activated Malate Transporters
  • 13.7.3 Plant Chloride Channel Family Members
  • 13.7.4 Phylogenetic Tree and Tissue Localization of CLC Family Members
  • 13.7.5 Cation, Chloride Co-transporters
  • 13.7.6 ATP-binding Cassette Transporters and Chloride Conductance Regulatory Protein
  • 13.7.7 Nitrate Transporter1/Peptide Transporter Proteins
  • 13.7.8 Chloride Channel-mediated Anion Transport
  • 13.7.9 Possible Mechanisms of Cl- Influx, Efflux, Reduced Net Xylem Loading, and its Compartmentalization
  • 13.8 Conclusion and Future Perspectives
  • References
  • Chapter 14 The Root Endomutualist Piriformospora indica: A Promising Bio-tool for Improving Crops under Salinity Stress
  • 14.1 Introduction
  • 14.2 P. indica: An Extraordinary Tool for Salinity Stress Tolerance Improvement
  • 14.3 Utilization of P. indica for Improving and Understanding the Salinity Stress Tolerance of Host Plants
  • 14.4 P. indica-induced Biomodulation in Host Plant under Salinity Stress
  • 14.5 Activity of Antioxidant Enzymes and ROS in Host Plant During Interaction with P. indica
  • 14.6 Role of Calcium Signaling and MAP Kinase Signaling Combating Salt Stress
  • 14.7 Effect of P. indica on Osmolyte Synthesis and Accumulation
  • 14.8 Salinity Stress Tolerance Mechanism in Axenically Cultivated and Root Colonized P. indica
  • 14.9 Conclusion
  • Acknowledgments
  • Conflict of Interest
  • References
  • Chapter 15 Root Endosymbiont-mediated Priming of Host Plants for Abiotic Stress Tolerance
  • 15.1 Introduction
  • 15.2 Bacterial Symbionts-mediated Abiotic Stress Tolerance Priming of Host Plants
  • 15.3 AM Fungi-mediated Alleviation of Abiotic Stress Tolerance of Vascular Plants
  • 15.4 Other Beneficial Fungi and their Importance in Abiotic Stress Tolerance Priming of Plants
  • 15.4.1 Piriformospora indica: A Model System for Bio-priming of Host Plants Against Abiotic Stresses
  • 15.4.2 Fungal Endophytes, AM-like Fungi, and Other DSE-mediated Bio-priming of Host Plants for Abiotic Stress Tolerance
  • 15.5 Implication of Transgenes from Symbiotic Microorganisms in the Era of Genetic Engineering and Omics
  • 15.6 Conclusion and Future Perspectives
  • Acknowledgements
  • References
  • Chapter 16 Insight into the Molecular Interaction Between Leguminous Plants and Rhizobia Under Abiotic Stress
  • 16.1 Introduction
  • 16.1.1 Why is Legume-Rhizobium Interaction Under the Scientific Scanner?
  • 16.2 Legume-Rhizobium Interaction Chemistry: A Brief Overview
  • 16.2.1 Nodule Structure and Formation: The Sequential Events
  • 16.2.2 Nod Factor Signaling: From Perception to Nodule Inception
  • 16.2.3 Reactive Oxygen Species: The Crucial Role of the Mobile Signal in Nodulation
  • 16.2.4 Phytohormones: Key Players on All Occasions
  • 16.2.5 Autoregulation of Nodulation: The Self Control from Within
  • 16.3 Role of Abiotic Stress Factors in Influencing Symbiotic Relations of Legumes
  • 16.3.1 How Do Abiotic Stress Factors Alter Rhizobial Behavior During Symbiotic Association?
  • 16.3.2 Abiotic Agents Modulate Symbiotic Signals of Host Legumes
  • 16.3.3 Abiotic Stress Agents as Regulators of Defense Signals of Symbiotic Hosts During Interaction with Other Pathogens
  • 16.4 Conclusion: The Lessons Unlearnt
  • References
  • Chapter 17 Effect of Nanoparticles on Oxidative Damage and Antioxidant Defense System in Plants
  • 17.1 Introduction
  • 17.2 Engineered Nanoparticles in the Environment
  • 17.3 Nanoparticle Transformations
  • 17.4 Plant Response to Nanoparticle Stress
  • 17.5 Generation of Reactive Oxygen Species (ROS)
  • 17.6 Nanoparticle Induced Oxidative Stress
  • 17.7 Antioxidant Defense System in Plants
  • 17.8 Conclusion
  • References
  • Chapter 18 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants
  • 18.1 Introduction
  • 18.2 Reaction of Plants to Abiotic Stress
  • 18.3 Basic Concept of Abiotic Stress Tolerance in Plants
  • 18.4 Genetics of Abiotic Stress Tolerance
  • 18.5 Fundamentals of Molecular Markers and Marker-assisted Selection
  • 18.5.1 Molecular Markers
  • 18.5.2 Marker-assisted Selection
  • 18.6 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants
  • 18.6.1 Marker-assisted Selection for Heat Tolerance
  • 18.6.1.1 Wheat (Triticum aestivum)
  • 18.6.1.2 Cowpea (Vigna unguiculata)
  • 18.6.1.3 Oilseed Brassica
  • 18.6.1.4 Grape (Vitis species)
  • 18.7 Marker-assisted Selection for Drought Tolerance
  • 18.7.2 Marker-assisted Selection for Salinity Tolerance
  • 18.7.2.1 Rice (Oryza sativa)
  • 18.7.2.2 Mungbean (Vigna radiata)
  • 18.7.2.3 Oilseed Brassica
  • 18.7.2.4 Tomato (Solanum lycopersicum)
  • 18.7.3 Marker-assisted Selection for Low Temperature Tolerance
  • 18.7.3.1 Barley (Hordeum vulgare)
  • 18.7.3.2 Pea (Pisum sativum)
  • 18.7.3.3 Oilseed Brassica
  • 18.7.3.4 Potato (Solanum tuberosum)
  • 18.8 Outlook
  • References
  • Chapter 19 Transgenes: The Key to Understanding Abiotic Stress Tolerance in Rice
  • 19.1 Introduction
  • 19.2 Drought Effects in Rice Leaves
  • 19.3 Molecular Analysis of Drought Stress Response
  • 19.4 Omics Approach to Analysis of Drought Response
  • 19.4.1 Transcriptomics
  • 19.4.2 Metabolomics
  • 19.4.3 Epigenomics
  • 19.5 Plant Breeding Techniques to Improve Rice Tolerance
  • 19.6 Marker-assisted Selection
  • 19.7 Transgenic Approach: Present Status and Future Prospects
  • 19.8 Looking into the Future for Developing Drought-tolerant Transgenic Rice Plants
  • 19.9 Salinity Stress in Rice
  • 19.10 Candidate Genes for Salt Tolerance in Rice
  • 19.11 QTL Associated with Rice Tolerance to Salinity Stress
  • 19.12 The Saltol QTL
  • 19.13 Conclusion
  • References
  • Chapter 20 Impact of Next-generation Sequencing in Elucidating the Role of microRNA Related to Multiple Abiotic Stresses
  • 20.1 Introduction
  • 20.2 NGS Platforms and their Applications
  • 20.2.1 NGS Platforms
  • 20.2.1.1 Roche 454
  • 20.2.1.2 ABI SoLid
  • 20.2.1.3 ION Torrent
  • 20.2.1.4 Illumina
  • 20.2.2 Applications of NGS
  • 20.2.2.1 Genomics
  • 20.2.2.2 Metagenomics
  • 20.2.2.3 Epigenomics
  • 20.2.2.4 Transcriptomics
  • 20.3 Understanding the Small RNA Family
  • 20.3.1 Small Interfering RNAs
  • 20.3.2 microRNA
  • 20.4 Criteria and Tools for Computational Classification of Small RNAs
  • 20.4.1 Pre-processing (Quality Filtering and Sequence Alignment)
  • 20.4.2 Identification and Prediction of miRNAs and siRNAs
  • 20.5 Role of NGS in Identification of Stress-regulated miRNA and their Targets
  • 20.5.1 miR156
  • 20.5.2 miR159
  • 20.5.3 miR160
  • 20.5.4 miR164
  • 20.5.5 miR166
  • 20.5.6 miR167
  • 20.5.7 miR168
  • 20.5.8 miR169
  • 20.5.9 miR172
  • 20.5.10 miR393
  • 20.5.11 miR396
  • 20.5.12 miR398
  • 20.6 Conclusion
  • Acknowledgments
  • References
  • Chapter 21 Understanding the Interaction of Molecular Factors During the Crosstalk Between Drought and Biotic Stresses in Plants
  • 21.1 Introduction
  • 21.2 Combined Stress Responses in Plants
  • 21.3 Combined Drought-Biotic Stresses in Plants
  • 21.3.1 Plant Responses Against Biotic Stress during Drought Stress
  • 21.3.2 Plant Responses Against Drought Stress during Biotic Stress
  • 21.4 Varietal Failure Against Multiple Stresses
  • 21.5 Transcriptome Studies of Multiple Stress Responses
  • 21.6 Signaling Pathways Induced by Drought-Biotic Stress Responses
  • 21.6.1 Reactive Oxygen Species
  • 21.6.2 Mitogen-activated Protein Kinase Cascades
  • 21.6.3 Transcription Factors
  • 21.6.4 Heat Shock Proteins and Heat Shock Factors
  • 21.6.5 Role of ABA Signaling during Crosstalk
  • 21.7 Conclusion
  • Acknowledgments
  • Conflict of Interest
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

172,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen