Protein Carbonylation

Principles, Analysis, and Biological Implications
 
 
Standards Information Network (Verlag)
  • erschienen am 5. Mai 2017
  • |
  • 416 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-37496-1 (ISBN)
 
Protein carbonylation has attracted the interest of a great number of laboratories since the pioneering studies at the Earl Stadtman's lab at NIH started in early 1980s. Since then, detecting protein carbonyls in oxidative stress situations became a highly efficient tool to uncover biomarkers of oxidative damage in normal and altered cell physiology.
In this book, research groups from several areas of interest have contributed to update the knowledge regarding detection, analyses and identification of carbonylated proteins and the sites where these modifications occur.
The scientific community will benefit from these reviews since they deal with specific, detailed technical approaches to study formation and detection of protein carbonyls. Moreover, the biological impact of such modifications in metabolic, physiologic and structural functions and, how these alterations can help understanding the downstream effects on cell function are discussed.
* Oxidative stress occurs in all living organisms and affects proteins and other macromolecules: Protein carbonylation is a measure of oxidative stress in biological systems
* Mass spectrometry, fluorescent labelling, antibody based detection, biotinylated protein selection and other methods for detecting protein carbonyls and modification sites in proteins are described
* Aging, neurodegenerative diseases, obstructive pulmonary diseases, malaria, cigarette smoke, adipose tissue and its relationship with protein carbonylation
* Direct oxidation, glycoxidation and modifications by lipid peroxidation products as protein carbonylation pathways
* Emerging methods for characterizing carbonylated protein networks and affected metabolic pathways
weitere Ausgaben werden ermittelt
Joaquim Ros is Professor at the University of Lleida. From 1995 his research interest has beenfocused on studying the effect of oxidative stress on proteins in several models (from bacteria tohumans) and how this damage affects protein function. He is the head of the Dept. of Basic Medical Sciences, Faculty of Medicine, University of Lleida.
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 7]
4 - List of Contributors [Seite 14]
5 - Preface [Seite 18]
6 - Chapter 1 Reactive Oxygen Species Signaling from the Perspective of the Stem Cell [Seite 19]
6.1 - 1.1 Introduction [Seite 19]
6.2 - 1.2 ROS Regulation [Seite 20]
6.3 - 1.3 ROS Signaling [Seite 21]
6.4 - 1.4 ROS and Stem Cells [Seite 23]
6.4.1 - 1.4.1 Adult Stem Cells [Seite 23]
6.4.2 - 1.4.2 Embryonic Stem Cells [Seite 25]
6.5 - 1.5 ROS, Metabolism, and Epigenetic Influence [Seite 27]
6.6 - 1.6 Stem Cells and Mitochondria [Seite 27]
6.7 - 1.7 ROS and Stem Cell Aging [Seite 30]
6.8 - 1.8 Concluding Remarks [Seite 31]
6.9 - References [Seite 31]
7 - Chapter 2 Analysis of Protein Carbonylation [Seite 42]
7.1 - 2.1 Introduction [Seite 42]
7.2 - 2.2 In Vivo Carbonylation Reactions [Seite 45]
7.2.1 - 2.2.1 Polypeptide Backbone Cleavage [Seite 46]
7.2.2 - 2.2.2 Carbonylation via Amino Acid Side Chain Oxidation [Seite 48]
7.2.3 - 2.2.3 Michael Addition of Carbonyl-Containing Group [Seite 49]
7.2.4 - 2.2.4 Oxidation of Glycated Proteins [Seite 50]
7.3 - 2.3 Analytical Derivatization of Carbonylated Groups [Seite 52]
7.4 - 2.4 Selective Purification and/or Detection of Carbonylated Proteins and Peptides [Seite 54]
7.4.1 - 2.4.1 Affinity Selection of 4-HNE Adducts as a Means of Purification [Seite 54]
7.4.2 - 2.4.2 Antibody-Based Detection of 2,4-DNP-Derivatized Proteins [Seite 54]
7.4.3 - 2.4.3 Biotinylated Protein Selection [Seite 55]
7.4.4 - 2.4.4 Fluorescence Detection [Seite 55]
7.5 - 2.5 Oxidative Stress-Based PTMS Not Involving Carbonylation [Seite 56]
7.6 - 2.6 Conclusion [Seite 56]
7.7 - References [Seite 58]
8 - Chapter 3 Diversity of Protein Carbonylation Pathways: Direct Oxidation, Glycoxidation, and Modifications by Lipid Peroxidation Products [Seite 66]
8.1 - 3.1 Introduction [Seite 66]
8.2 - 3.2 Pathways of Protein Carbonylation [Seite 67]
8.2.1 - 3.2.1 Direct Oxidation of Lys, Arg, Pro, and Thr Amino Acid Residues Side Chains [Seite 67]
8.2.2 - 3.2.2 Tryptophan Oxidation [Seite 70]
8.2.3 - 3.2.3 Protein Carbonylation via Backbone Cleavage [Seite 71]
8.2.4 - 3.2.4 Protein Carbonylation via Michael Addition of Reactive Lipid Peroxidation Products [Seite 71]
8.2.5 - 3.2.5 Protein Carbonylation via Glycoxidation and Reactions with Carbohydrate Autoxidation Products [Seite 73]
8.3 - 3.3 Analytical Methods for Detection of Total and Specific Protein Carbonylation [Seite 75]
8.3.1 - 3.3.1 Detection of Total Protein Carbonylation Using Carbonyl-Specific Derivatization [Seite 76]
8.3.2 - 3.3.2 Mass Spectrometry-Based Identification of Carbonylated Proteins, Types, and Sites of Modifications [Seite 79]
8.4 - 3.4 Protein Susceptibility to Different Carbonylation Pathways and Modifications Cross-Talk [Seite 85]
8.4.1 - 3.4.1 Susceptibility of Proteins to Carbonylation and Possible Sequence Motifs [Seite 85]
8.4.2 - 3.4.2 Protein Modifications Cross-Talk [Seite 87]
8.5 - 3.5 Conclusion [Seite 89]
8.6 - Acknowledgments [Seite 90]
8.7 - References [Seite 90]
9 - Chapter 4 Protein Carbonylation by Reactive Lipids [Seite 101]
9.1 - 4.1 Introduction [Seite 101]
9.2 - 4.2 Chemistry of Protein Carbonylation by Reactive Lipid Aldehydes [Seite 102]
9.3 - 4.3 Antigenicity of Protein Carbonyls [Seite 105]
9.4 - 4.4 Thiolation of Protein Carbonyls [Seite 107]
9.5 - 4.5 Reductive Amination-Based Fluorescent Labeling of Protein Carbonyls [Seite 109]
9.6 - 4.6 Conclusion [Seite 111]
9.7 - References [Seite 112]
10 - Chapter 5 Mechanism and Functions of Protein Decarbonylation [Seite 115]
10.1 - 5.1 Protein Carbonylation [Seite 115]
10.2 - 5.2 Primary Protein Carbonylation in Cell Signaling [Seite 116]
10.3 - 5.3 Discovery and Mechanisms of Protein Decarbonylation [Seite 119]
10.4 - 5.4 Proposed Functions of Protein Decarbonylation in Oxidative Stress and Redox Signaling [Seite 121]
10.5 - Acknowledgments [Seite 125]
10.6 - References [Seite 125]
11 - Chapter 6 Carbonylated Proteins and Their Metabolic Regulation: Overview of Mechanisms, Target Proteins, and Characterization Using Proteomic Methods [Seite 128]
11.1 - 6.1 Metabolic Regulation and Reactive Oxygen Species [Seite 128]
11.2 - 6.2 ROS and Protein Carbonylation [Seite 129]
11.3 - 6.3 Metabolic Control and Characteristics of Carbonylated Proteins [Seite 131]
11.4 - 6.4 Protein Targets of Carbonylation and Implications in Human Health [Seite 132]
11.5 - 6.5 Technologies and Methods for Characterizing Protein Carbonylation [Seite 136]
11.6 - 6.6 Emerging Multifunctional Reagents for Protein Carbonylation Analysis via MS [Seite 137]
11.7 - 6.7 Emerging Methods for Characterizing Carbonylated Protein Networks and Affected Pathways [Seite 141]
11.8 - 6.8 Conclusion [Seite 143]
11.9 - References [Seite 143]
12 - Chapter 7 Oxidative Stress and Protein Carbonylation in Malaria [Seite 149]
12.1 - 7.1 Introduction [Seite 149]
12.2 - 7.2 Oxidative Stress during Malaria Infection [Seite 150]
12.3 - 7.3 Protein Carbonylation in Plasmodium and Oxidative Targeting of Antimalarials [Seite 155]
12.4 - 7.4 Oxidative Dysfunction in Host Tissues [Seite 161]
12.4.1 - 7.4.1 Cerebral Malaria [Seite 162]
12.4.2 - 7.4.2 Acute Kidney Injury [Seite 163]
12.4.3 - 7.4.3 Severe Anemia [Seite 163]
12.4.4 - 7.4.4 Liver Failure [Seite 164]
12.4.5 - 7.4.5 Pregnancy [Seite 165]
12.4.6 - 7.4.6 Pulmonary Edema [Seite 165]
12.4.7 - 7.4.7 Acidosis and Hypoglycemia [Seite 165]
12.5 - 7.5 Host Tolerance to Malaria by Modulation of Oxidative Stress Responses [Seite 166]
12.6 - 7.6 Perspectives [Seite 171]
12.7 - References [Seite 171]
13 - Chapter 8 Protein Carbonylation in Brains of Subjects with Selected Neurodegenerative Disorders [Seite 185]
13.1 - 8.1 Introduction to Protein Carbonylation [Seite 185]
13.2 - 8.2 Relationship between ROS and Oxidative Stress [Seite 187]
13.3 - 8.3 An Overview of Some Neurodegenerative Diseases [Seite 189]
13.3.1 - 8.3.1 Alzheimer Disease [Seite 190]
13.3.2 - 8.3.2 Stages of Alzheimer Disease [Seite 191]
13.3.3 - 8.3.3 Preclinical Alzheimer Disease [Seite 191]
13.3.4 - 8.3.4 Mild Cognitive Impairment [Seite 191]
13.3.5 - 8.3.5 Early-Stage Alzheimer Disease [Seite 192]
13.3.6 - 8.3.6 Late-Stage Alzheimer Disease [Seite 192]
13.4 - 8.4 Role of Protein Carbonylation in Brains of Subjects with AD [Seite 192]
13.4.1 - 8.4.1 Brain Proteins Carbonylated in AD [Seite 193]
13.4.2 - 8.4.2 Brain Proteins Carbonylated in MCI [Seite 196]
13.5 - 8.5 An Introduction to Tauopathies [Seite 203]
13.5.1 - 8.5.1 Role of Protein Carbonylation in Brain in Tauopathies [Seite 204]
13.6 - 8.6 An Introduction to Amyotrophic Lateral Sclerosis [Seite 204]
13.6.1 - 8.6.1 Role of CNS Protein Carbonylation in ALS [Seite 205]
13.7 - 8.7 Discussion [Seite 206]
13.8 - References [Seite 207]
14 - Chapter 9 Cigarette Smoke-Induced Protein Carbonylation: Focus on Recent Human Studies [Seite 224]
14.1 - 9.1 Introduction [Seite 224]
14.1.1 - 9.1.1 Reactive Species of CS and CS-Induced Oxidative Stress [Seite 226]
14.1.2 - 9.1.2 Protein Carbonylation [Seite 227]
14.1.3 - 9.1.3 Methodological Aspects of Protein Carbonylation Detection [Seite 228]
14.2 - 9.2 Protein Carbonylation in Human Smokers [Seite 230]
14.2.1 - 9.2.1 CS-Induced Carbonylation of Salivary Proteins [Seite 230]
14.2.2 - 9.2.2 CS-Induced Protein Carbonylation in the Respiratory System [Seite 230]
14.2.3 - 9.2.3 CS-Induced Protein Carbonylation in the Circulatory System [Seite 234]
14.2.4 - 9.2.4 CS-Induced Protein Carbonylation in the Muscular System [Seite 235]
14.3 - 9.3 Protein Carbonylation in Cultured Human Cell Models of Exposure to CS [Seite 236]
14.3.1 - 9.3.1 In Vitro Models of Exposure to CS [Seite 236]
14.3.2 - 9.3.2 CS-Induced Protein Carbonylation in Oral Cavity Cells [Seite 239]
14.3.3 - 9.3.3 CS-Induced Protein Carbonylation in Airway Epithelial Cells [Seite 242]
14.3.4 - 9.3.4 CS-Induced Protein Carbonylation in Other Epithelial Cells [Seite 244]
14.4 - 9.4 Limitations and Congruence of In Vivo and In Vitro Human Studies [Seite 246]
14.4.1 - 9.4.1 Limitations of In Vivo Human Studies [Seite 246]
14.4.2 - 9.4.2 Limitations of In Vitro Human Studies [Seite 246]
14.4.3 - 9.4.3 Congruence between Findings in Human Smokers and in Human Cell Models of Exposure to CS [Seite 247]
14.5 - 9.5 Conclusion and Future Perspectives [Seite 248]
14.6 - Acknowledgments [Seite 249]
14.7 - References [Seite 249]
15 - Chapter 10 Chronic Obstructive Pulmonary Disease and Oxidative Damage [Seite 259]
15.1 - 10.1 Introduction [Seite 260]
15.2 - 10.2 Protein Oxidation in Tissues [Seite 262]
15.2.1 - 10.2.1 Production of Oxidants in the Skeletal Muscle Fibers [Seite 264]
15.3 - 10.3 Antioxidants in Skeletal Muscle Fibers [Seite 265]
15.4 - 10.4 Implications of Protein Carbonylation in COPD Skeletal Muscle Dysfunction [Seite 267]
15.4.1 - 10.4.1 Identification of Skeletal Muscle Dysfunction in COPD [Seite 267]
15.4.2 - 10.4.2 Evidence of Protein Carbonylation in Skeletal Muscles of COPD Patients [Seite 268]
15.4.3 - 10.4.3 Biological Significance of Protein Carbonylation in COPD Muscles [Seite 268]
15.5 - 10.5 Muscle Protein Carbonylation and Exercise in COPD Patients [Seite 270]
15.6 - 10.6 Protein Carbonylation in Muscles Exposed to Chronic Cigarette Smoke [Seite 271]
15.6.1 - 10.6.1 Studies in Humans [Seite 271]
15.6.2 - 10.6.2 Studies in Animals [Seite 271]
15.7 - 10.7 Protein Carbonylation in Cancer Cachexia Models [Seite 273]
15.7.1 - 10.7.1 Evidence of Protein Carbonylation in Muscles of Cancer Cachexia Models [Seite 273]
15.7.2 - 10.7.2 Protein Oxidation in Cancer Cachectic Muscles [Seite 273]
15.7.2.1 - 10.7.2.1 Studies in Humans [Seite 273]
15.7.2.2 - 10.7.2.2 Cachexia in COPD and Lung Cancer [Seite 274]
15.7.2.3 - 10.7.2.3 Studies in Animals [Seite 274]
15.8 - 10.8 Protein Carbonylation as a Predisposing Mechanism of Lung Cancer in COPD [Seite 275]
15.8.1 - 10.8.1 Protein Oxidation as a Contributing Factor to Lung Cancer in Patients [Seite 275]
15.8.2 - 10.8.2 Evidence of Protein Oxidation in Lung Cancer [Seite 276]
15.8.2.1 - 10.8.2.1 Human Studies [Seite 276]
15.8.2.2 - 10.8.2.2 Studies in Animals [Seite 277]
15.9 - 10.9 Conclusion and Future Perspectives [Seite 277]
15.10 - Acknowledgments [Seite 278]
15.11 - References [Seite 278]
16 - Chapter 11 Protein Carbonylation in Aging and Senescence [Seite 290]
16.1 - 11.1 Introduction [Seite 290]
16.2 - 11.2 Protein Oxidation during Aging [Seite 292]
16.3 - 11.3 Chemistry of Protein Carbonylation and Fate of Carbonylated Proteins [Seite 295]
16.4 - 11.4 Protein Carbonyls in Cellular Aging Models [Seite 297]
16.5 - 11.5 Protein Carbonylation in Aging Organisms [Seite 298]
16.6 - 11.6 Concluding Remarks [Seite 300]
16.7 - References [Seite 301]
17 - Chapter 12 Adipose Carbonylation and Mitochondrial Dysfunction [Seite 309]
17.1 - 12.1 Introduction [Seite 309]
17.2 - 12.2 Reactive Oxygen Species (ROS) [Seite 310]
17.2.1 - 12.2.1 Metabolism of Reactive Lipid Aldehydes [Seite 315]
17.3 - 12.3 Oxidative Stress and Obesity [Seite 316]
17.3.1 - 12.3.1 Oxidative Stress in Obese Adipose Tissue [Seite 316]
17.3.2 - 12.3.2 Protein Carbonylation in the Adipocyte [Seite 318]
17.3.3 - 12.3.3 Additional Outcomes of Oxidative Stress in Fat Cells [Seite 320]
17.4 - 12.4 Detection of Protein Carbonylation [Seite 321]
17.4.1 - 12.4.1 Chemical Derivatization Using Carbonyl-Reactive Probes [Seite 321]
17.5 - 12.5 Outcomes of Protein Carbonylation [Seite 324]
17.5.1 - 12.5.1 Modification of Proteins by 4-HNE and Altered Function [Seite 325]
17.5.2 - 12.5.2 Carbonylation in Cell Signaling [Seite 327]
17.5.3 - 12.5.3 Carbonylation and Mitochondrial Dysfunction [Seite 328]
17.5.4 - 12.5.4 Carbonylation in Human Adipose Tissue [Seite 330]
17.6 - 12.6 Concluding Remarks [Seite 331]
17.7 - Acknowledgments [Seite 332]
17.8 - References [Seite 332]
18 - Chapter 13 Protein Carbonylation in Plants [Seite 339]
18.1 - 13.1 Introduction [Seite 340]
18.2 - 13.2 Turnover of Reactive Oxygen Species in Plants [Seite 341]
18.2.1 - 13.2.1 ROS Are Produced at Multiple Sites in the Plant Cell [Seite 341]
18.2.2 - 13.2.2 Different Types of ROS Are Produced in Different Cellular Compartments [Seite 341]
18.2.3 - 13.2.3 Free Metal Ions Catalyze the Fenton Reaction [Seite 341]
18.2.4 - 13.2.4 Many Enzyme (Systems) Can Remove ROS [Seite 342]
18.2.5 - 13.2.5 The Cellular Steady-State Level of Hydrogen Peroxide Is in the Micromolar Range [Seite 342]
18.2.6 - 13.2.6 Fatty Acid Peroxidation Products Can Accumulate to High Levels in Plant Cells [Seite 342]
18.3 - 13.3 Methods Used in Plants for Quantifying and Identifying Carbonylation Sites [Seite 343]
18.4 - 13.4 Protein Carbonylation in Plants [Seite 344]
18.4.1 - 13.4.1 Physiological Importance [Seite 344]
18.4.2 - 13.4.2 Overall Level [Seite 344]
18.4.3 - 13.4.3 Carbonylation Site [Seite 345]
18.4.4 - 13.4.4 Effect of Carbonylation on Affected Proteins [Seite 345]
18.5 - 13.5 Protein Carbonylation in Plant Mitochondria [Seite 346]
18.5.1 - 13.5.1 ROS Are Produced at Several Places in the Mitochondria [Seite 346]
18.5.2 - 13.5.2 Many Mitochondrial Proteins Are Carbonylated [Seite 346]
18.5.3 - 13.5.3 Many Mitochondrial Proteins Are Conjugated with HNE [Seite 348]
18.5.4 - 13.5.4 Carbonylated Proteins Are Degraded [Seite 348]
18.6 - 13.6 Protein Carbonylation in Seeds [Seite 351]
18.6.1 - 13.6.1 Metabolic Activity Determines the Steady-State Oxygen Concentration inside the Seed [Seite 351]
18.6.2 - 13.6.2 Recalcitrant Seeds Accumulate Carbonylated Proteins during Desiccation [Seite 351]
18.6.3 - 13.6.3 Protein Carbonylation Plays a Role in Breaking Seed Dormancy [Seite 352]
18.6.4 - 13.6.4 Protein Carbonylation Increases with Seed Aging [Seite 352]
18.6.5 - 13.6.5 Protein Carbonylation Increases during Germination [Seite 352]
18.6.6 - 13.6.6 Protein Carbonylation Is Involved in Many Aspects of Seed Physiology [Seite 353]
18.7 - 13.7 Perspectives [Seite 353]
18.8 - Acknowledgments [Seite 353]
18.9 - References [Seite 354]
19 - Chapter 14 Specificity of Protein Carbonylation and Its Relevance in Aging [Seite 358]
19.1 - 14.1 Introduction [Seite 358]
19.2 - 14.2 Specificity of Protein Oxidative Damage [Seite 359]
19.2.1 - 14.2.1 Location [Seite 360]
19.2.2 - 14.2.2 Metals [Seite 363]
19.2.3 - 14.2.3 Sequences Prone to Carbonylation [Seite 364]
19.2.4 - 14.2.4 Nucleotide-Binding Proteins [Seite 365]
19.3 - 14.3 Protein Carbonylation in Aging [Seite 366]
19.3.1 - 14.3.1 Bacteria [Seite 375]
19.3.2 - 14.3.2 Yeast [Seite 377]
19.3.3 - 14.3.3 Plants [Seite 379]
19.3.4 - 14.3.4 Invertebrate Animals [Seite 380]
19.3.5 - 14.3.5 Rodents [Seite 382]
19.3.6 - 14.3.6 Humans [Seite 384]
19.3.7 - 14.3.7 Calorie Restriction, Protein Oxidation, and Aging [Seite 386]
19.3.8 - 14.3.8 "Aging" In Vitro: Storage of Protein Preparations [Seite 387]
19.4 - 14.4 Concluding Remarks [Seite 388]
19.5 - Acknowledgments [Seite 389]
19.6 - References [Seite 389]
20 - Index [Seite 402]
21 - Series Editors [Seite 417]
22 - EULA [Seite 419]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

140,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen