Bioinspired Materials for Medical Applications

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 24. September 2016
  • |
  • 544 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100746-4 (ISBN)
 

Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine.

The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems

With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field.

  • Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices
  • Brings together the two fields of biomaterials and bioinspired materials
  • Written by a world-class team of research scientists, engineers, and clinicians
  • Englisch
  • Cambridge
Elsevier Science
  • 28,79 MB
978-0-08-100746-4 (9780081007464)
0081007469 (0081007469)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Bioinspired Materials for Medical Applications
  • Copyright
  • Contents
  • Contributors
  • Woodhead Publishing Series in Biomaterials
  • Preamble
  • References
  • Chapter 1: Design and preparation of biomimetic and bioinspired materials
  • 1.1 General introduction
  • 1.1.1 Drug delivery-The need for new solutions for an old challenge
  • 1.1.2 Biomimetic and bioinspired materials
  • 1.2 Lipid-based systems
  • 1.2.1 Structure and properties of lipids
  • 1.2.2 Design of lipid-based delivery systems
  • 1.2.2.1 Liposomes
  • 1.2.2.2 SLNs and NLC
  • 1.2.2.3 Self-emulsifying drug-delivery systems
  • 1.3 Glycan-based systems
  • 1.3.1 Structure and properties of glycans
  • 1.3.2 Design of glycan-based delivery systems
  • 1.4 Peptide-based systems
  • 1.4.1 Structure and properties of peptides
  • 1.4.2 Design of peptide-based delivery systems
  • 1.4.2.1 a -Helix
  • 1.4.2.2 ß -Sheet
  • 1.4.2.3 Peptide amphiphiles
  • 1.4.2.4 Peptides as functional motifs
  • 1.5 NAs-based systems
  • 1.5.1 Structure and properties of NAs
  • 1.5.1.1 Principles governing NAs-based nanostructure assembly
  • 1.5.1.2 Pure NAs nanostructures
  • 1.5.2 Design of NAs-based delivery systems
  • 1.5.2.1 Delivery by branched or 2D-NAs structures
  • 1.5.2.2 Delivery by wireframe and origami DNA structures
  • 1.6 Dendrimer-based systems
  • 1.6.1 Structure and properties of dendrimers
  • 1.6.2 Design of dendrimer-based delivery systems
  • 1.6.2.1 Design, preparation and types of dendrimers
  • 1.6.2.2 Applications of dendrimers as drug delivery systems
  • 1.7 Concluding remarks and future perspectives
  • References
  • Chapter 2: Preparative methods and devices of bioinspired materials in drug-delivery systems
  • 2.1 Biomimetics: An overview
  • 2.2 Drug-delivery systems
  • 2.3 Modification of drug-delivery carriers
  • 2.4 Cells as a biomimetic model or drug-delivery vehicle
  • 2.4.1 Erythrocyte-inspired delivery systems
  • 2.4.2 Virus-like particles as drug-delivery vesicles
  • 2.5 Bioinspired preparation methodologies for drug-delivery systems
  • 2.5.1 Bioinspired nanoarchitectonics
  • 2.5.2 Bioinspired processing of drug-delivery carriers
  • 2.6 Conclusions/future perspectives
  • References
  • Chapter 3: Metamorphic biomaterials
  • 3.1 Introduction
  • 3.2 Shape-changing polymers
  • 3.2.1 Physical stimuli shape-responsive polymers
  • 3.2.1.1 Photoresponsive polymers
  • 3.2.1.2 Thermoresponsive polymers
  • 3.2.1.3 Electroactive polymers
  • 3.2.1.4 Magnetoresponsive polymers
  • 3.2.2 Chemical shape-responsive polymers
  • 3.2.2.1 pH-responsive polymers
  • 3.2.2.2 Redox-responsive polymers
  • 3.2.3 Biological shape-responsive polymers
  • 3.2.3.1 Glucose-responsive polymers
  • 3.2.3.2 Enzyme-responsive polymers
  • 3.3 Representative applications
  • 3.3.1 Tissue engineering
  • 3.3.2 Drug-delivery systems
  • 3.3.3 Gene therapy
  • 3.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 4: Molecular signalling mechanisms of host-materials interactions
  • 4.1 Introduction
  • 4.2 The foreign-body response
  • 4.2.1 The role of adsorbed proteins in signalling
  • 4.2.1.1 Protein corona
  • 4.2.2 Macrophages perform an orchestrating role
  • 4.2.3 Role of the adaptive immune system
  • 4.2.4 Bacteria complicate the inflammatory response
  • 4.3 Molecular signalling mechanisms
  • 4.4 Conclusion and future developments
  • Acknowledgment
  • References
  • Chapter 5: Multifunctional biomaterials and their bioinspired systems for bioactive molecules delivery
  • 5.1 Introduction
  • 5.2 Biomaterials influencing cellular response
  • 5.3 Biomaterials influencing microorganisms
  • 5.4 Bio-inspired materials influencing cellular response and microorganisms
  • 5.5 Conclusions
  • References
  • Chapter 6: Perspectives of bioinspired materials in regenerative medicine
  • 6.1 Introduction
  • 6.2 Skin Regeneration
  • 6.3 Bone regeneration
  • 6.4 Nerve regeneration
  • 6.4.1 Peripheral nerve regeneration
  • 6.4.2 Central nerve injury repair and regeneration
  • 6.5 Cardiac regeneration
  • 6.6 Final remarks
  • Acknowledgment
  • References
  • Chapter 7: Advanced techniques for characterizing bioinspired materials
  • 7.1 Introduction
  • 7.2 Mechanical properties
  • 7.3 Mechanical fatigue
  • 7.3.1 Coffin-Manson model-plastic strain range-life model
  • 7.3.2 Smith-Watson-Topper model
  • 7.3.3 Morrow energy model-plastic strain energy density-life model
  • 7.4 Fourier transform infrared spectroscopy (FTIR)
  • 7.4.1 Normal modes of vibration
  • 7.4.2 Quantitative analysis
  • 7.4.3 Polymer molecular orientation
  • 7.5 Thermal characterization techniques
  • 7.5.1 Differential scanning calorimetry
  • 7.5.2 Thermogram analysis
  • 7.5.3 Thermogravimetric analysis
  • 7.5.4 Thermal degradation kinetics
  • 7.6 Scanning electron microscopy
  • 7.6.1 Sample preparation for SEM analysis
  • 7.6.2 The applications of SEM
  • 7.7 Cytotoxicity testing
  • 7.7.1 Reference materials
  • 7.7.2 Preparation of extracts
  • 7.7.3 Preparation of material for direct contact assay
  • 7.7.4 Assessment of cytotoxicity according to ISO standards
  • 7.7.4.1 Test on extracts
  • 7.7.4.2 Test by direct contact
  • 7.7.4.3 Test by indirect contact
  • Agar diffusion assay
  • Filter diffusion assay
  • Further considerations
  • References
  • Chapter 8: Imaging strategies for bioinspired materials
  • 8.1 Introduction
  • 8.2 Targeting ligands
  • 8.3 Positron emission tomography
  • 8.4 Single photon emission computed tomography
  • 8.5 X-ray computed tomography
  • 8.6 Biophotonic imaging
  • 8.6.1 Fluorescence imaging
  • 8.6.2 Bioluminescence imaging
  • 8.6.3 Confocal laser endomicroscopy
  • 8.7 Magnetic resonance imaging
  • 8.8 Conclusion and future perspectives
  • Acknowledgments
  • References
  • Chapter 9: Injectable hydrogels as a delivery system for bone regeneration
  • 9.1 Introduction
  • 9.1.1 Bone biology
  • 9.1.2 The need for bone grafts
  • 9.2 SBSs based on ceramics
  • 9.3 Ceramic-based IBSs commercially available
  • 9.3.1 CaP bone cements
  • 9.3.2 Injectable polymer-ceramic composites
  • 9.4 IBSs based on hydrogels
  • 9.4.1 In situ gelation hydrogels for IBSs
  • 9.4.2 IBSs based on hydrogels with additional bioactivity
  • 9.5 Regulation of medical devices: Europe versus United States
  • 9.5.1 Europe
  • 9.5.2 United States
  • 9.6 Regulatory perspective on IBSs
  • 9.7 Future trends/conclusions
  • References
  • Chapter 10: Therapeutic proteins in bioactive materials for wound healing
  • 10.1 Introduction
  • 10.1.1 Wounds
  • 10.1.2 Wound healing
  • 10.2 Therapeutic proteins and their role in wound healing
  • 10.2.1 Growth factors
  • 10.2.2 Adhesion-promoting factors
  • 10.2.3 Other therapeutic proteins
  • 10.3 Delivery of therapeutic proteins for wound
  • 10.3.1 Incorporation of therapeutic proteins to scaffold material
  • 10.3.2 Systemic delivery of therapeutic proteins
  • 10.3.3 Gene therapy
  • 10.4 How does the release kinetics affect the activity of therapeutic proteins?
  • 10.5 Conclusions
  • Acknowledgments
  • References
  • Chapter 11: Smart devices: Micro- and nanosensors
  • 11.1 Introduction
  • 11.1.1 Sensors
  • 11.1.2 Sensor concept
  • 11.2 Static and dynamic characteristics
  • 11.2.1 Smart devices
  • 11.2.2 Micro- and nanoscale
  • 11.3 Design of micro- and nanosensors for medical applications
  • 11.4 Types of sensors
  • 11.4.1 Direct versus indirect sensing
  • 11.4.2 Active versus passive
  • 11.4.3 Sensing principles
  • 11.4.4 Electrical sensors
  • 11.4.5 Mechanical sensors
  • 11.4.6 Optical sensors
  • 11.4.7 Chemical sensors
  • 11.4.8 Biosensors
  • 11.5 Examples of medical micro- and nanodevices
  • 11.5.1 Smart stent
  • 11.5.2 Optrodes
  • 11.5.3 Organ-on-a-chip
  • 11.6 Future challenges
  • Acknowledgments
  • References
  • Chapter 12: Smart devices: Lab-on-a-chip
  • 12.1 Introduction to microfluidics and miniaturization
  • 12.2 Microtechnologies in lab-on-a-chip devices
  • 12.2.1 Silicon and glass technologies
  • 12.2.2 Polymer technologies
  • 12.2.3 Biomaterials for lab-on-a-chip devices
  • 12.2.4 Integration of biologic sensing elements in lab-on-a-chip devices
  • 12.2.5 The lab-on-a-cell concept
  • 12.3 Manipulating and controlling microflows
  • 12.3.1 Pumping and mixing
  • 12.3.2 Separation of species
  • 12.3.3 Smart materials for controlling fluids
  • 12.4 Detection techniques in lab-on-a-chip devices
  • 12.4.1 Electrochemical detection
  • 12.4.2 Optical detection
  • 12.4.3 Acoustic detection
  • 12.5 Diagnosis applications
  • 12.5.1 Analytical chemistry
  • 12.5.2 RBCs deformability evaluation
  • 12.5.3 HIV diagnostics
  • 12.6 Conclusions and perspectives
  • 12.7 Future research directions
  • Acknowledgments
  • References
  • Chapter 13: Electronic tongues and aptasensors
  • 13.1 Introduction
  • 13.2 Electrochemical devices: Chemical sensors and aptasensors
  • 13.2.1 General principles and apparatus
  • 13.2.1.1 Potentiometry
  • 13.2.1.2 Amperometry and voltammetry
  • 13.2.1.3 Electrochemical impedance spectroscopy
  • 13.2.2 E-tongues and sensor-arrays: design, development, and applications
  • 13.2.2.1 Potentiometric based-sensor arrays for biomedical and pharmaceutical applications
  • 13.2.2.2 Voltammetric based-sensor arrays for biomedical and pharmaceutical applications
  • 13.2.2.3 Impedimetric based-sensor arrays for biomedical and pharmaceutical applications
  • 13.2.3 Aptasensors: Design, development and application
  • 13.2.3.1 Electrochemical aptasensors based on sandwich design
  • 13.2.3.2 Electrochemical aptasensors based on target binding-induced aptamer conformational changes
  • 13.2.3.3 Electrochemical aptasensors based on target-induced aptamer displacement
  • 13.2.3.4 Electrochemical aptasensors for multiple protein detection
  • 13.3 Conclusions and future perspectives
  • Acknowledgments
  • References
  • Chapter 14: Advances on nucleic acid delivery with nonviral vectors
  • 14.1 From the genome to gene-based therapy
  • 14.1.1 RNA interference: Reachable protein modulation
  • 14.1.2 DNA/RNA in vivo delivery: Challenges and limitations
  • 14.1.2.1 Extracellular barriers
  • 14.1.2.2 Cellular and intracellular barriers
  • 14.2 Lipid- and polymer-based nonviral vectors for systemic siRNA and DNA delivery
  • 14.2.1 Lipoplexes and liposomes
  • 14.2.2 Neutral liposomes
  • 14.2.3 Polymeric nonviral vectors
  • 14.3 siRNA-conjugate delivery systems: Down to the essential
  • 14.3.1 Dynamic polyconjugates
  • 14.3.2 GalNAc-conjugated siRNA
  • 14.4 Future perspectives and challenges
  • Acknowledgments
  • References
  • Chapter 15: Artificial virus particles
  • 15.1 Introduction
  • 15.2 Virus particles-Basic functionalities and properties
  • 15.2.1 Viral nucleic acid
  • 15.2.2 Protein coat
  • 15.2.3 Bacteriophage
  • 15.2.3.1 Filamentous phage
  • 15.3 Viral particles engineering
  • 15.3.1 Genetic engineering
  • 15.3.2 Chemical modifications
  • 15.3.3 Self-assembly/encapsulation strategies
  • 15.4 Virus engineering towards biomedical applications
  • 15.4.1 Targeted delivery and therapy
  • 15.4.1.1 Drug carriers
  • 15.4.1.2 Gene carriers
  • 15.4.2 Molecular imaging for detection, diagnosis, and monitoring
  • 15.4.3 Vaccine applications
  • 15.4.4 Bacterial infections control
  • 15.5 Conclusions and future perspectives
  • Acknowledgments
  • References
  • Chapter 16: Synthetic biology strategies towards the development of new bioinspired technologies for medical applications
  • 16.1 Introduction
  • 16.2 Tools and fundamentals
  • 16.2.1 Engineering principles
  • 16.2.2 Parts and devices
  • 16.2.2.1 State sensors (Promoters, RBS, riboswitches and aptamers)
  • 16.2.2.2 Spatiotemporal controllers
  • 16.2.2.3 Logic gates
  • 16.2.3 DNA sequencing and synthesis
  • 16.2.4 Chassis
  • 16.2.5 Genome editing tools
  • 16.2.6 Genomics, transcriptomics, proteomics and metabolomics tools
  • 16.2.7 In silico models
  • 16.3 Prevention
  • 16.3.1 Vaccine development
  • 16.3.2 Engineering insect populations for vector control
  • 16.4 Biosensing and triggering
  • 16.4.1 Quorum sensing
  • 16.4.2 Other types of environmental induction
  • 16.4.3 Aptamers and biosensing
  • 16.5 Targeting
  • 16.5.1 Targeting cancer cells using bacteria
  • 16.5.2 Targeting cancer cells using cell penetrating peptides (CPPs)
  • 16.6 Detection: Medical diagnosis
  • 16.7 Treatment
  • 16.7.1 Engineering commensal bacteria against pathogens and virus
  • 16.7.2 Engineering commensal bacteria for the treatment of metabolic diseases
  • 16.7.3 Engineering bacteria to treat cancer
  • 16.7.4 Engineering virus to treat cancer
  • 16.7.5 Engineering virus to treat infections
  • 16.7.6 Aptamers applied to cancer treatment
  • 16.7.7 Prosthetic gene networks: Synthetic gene circuits in mammalian cells
  • 16.7.8 CRISPR/Cas9 system and gene therapy
  • 16.8 Conclusions and future perspectives
  • Acknowledgments
  • References
  • Abbreviation
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok