Sparse Modeling

Theory, Algorithms, and Applications
 
 
CRC Press Inc
  • 1. Auflage
  • |
  • erschienen am 15. Februar 2011
  • |
  • 253 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-4398-2870-0 (ISBN)
 
Sparse modeling is an important issue in many applications of machine learning and statistics where the main objective is discovering predictive patterns in data to enhance understanding of underlying physical, biological, and other natural processes. This book surveys recent advances in statistics, machine learning, and signal processing related to sparse modeling. It provides a comprehensive introduction to recent developments in sparse modeling research, including the theoretical basis for sparse modeling, algorithmic approaches, and applications to computational biology, medicine, neuroscience, graphical model selection, and compressed sensing.
  • Englisch
  • Baton Rouge
  • |
  • USA
Taylor & Francis Inc
  • Für höhere Schule und Studium
  • |
  • Researchers and graduate students in machine learning, data mining, statistics, signal processing, computational biology, computational neuroscience, image processing, finance, and systems management.
  • 35
  • |
  • 35 s/w Abbildungen
  • |
  • 35 b/w images
978-1-4398-2870-0 (9781439828700)
1439828709 (1439828709)
weitere Ausgaben werden ermittelt
Introduction
Motivating Examples
Sparse Recovery in a Nutshell
Statistical Learning versus Compressed Sensing

Sparse Recovery: Problem Formulations
Noiseless Sparse Recovery
Approximations
Convexity: Brief Review
Relaxations of (P0) Problem
The Effect of lq-Regularizer on Solution Sparsity
l1-norm Minimization as Linear Programming
Noisy Sparse Recovery
A Statistical View of Sparse Recovery
Beyond LASSO: Other Loss Functions and Regularizers

Theoretical Results (Deterministic Part)
The Sampling Theorem
Surprising Empirical Results
Signal Recovery from Incomplete Frequency Information
Mutual Coherence
Spark and Uniqueness of (P0) Solution
Null Space Property and Uniqueness of (P1) Solution
Restricted Isometry Property (RIP)
Square Root Bottleneck for the Worst-Case Exact Recovery
Exact Recovery Based on RIP

Theoretical Results (Probabilistic Part)
When Does RIP Hold?
Johnson-Lindenstrauss Lemma and RIP for Subgaussian Random Matrices
Random Matrices Satisfying RIP
RIP for Matrices with Independent Bounded Rows and Matrices with Random Rows of Fourier Transform

Algorithms for Sparse Recovery Problems
Univariate Thresholding is Optimal for Orthogonal Designs
Algorithms for l0-norm Minimization
Algorithms for l1-norm Minimization (LASSO)

Beyond LASSO: Structured Sparsity
The Elastic Net
Fused LASSO
Group LASSO: l1/l2 Penalty
Simultaneous LASSO: l1/l8 Penalty
Generalizations
Applications

Beyond LASSO: Other Loss Functions
Sparse Recovery from Noisy Observations
Exponential Family, GLMs, and Bregman Divergences
Sparse Recovery with GLM Regression

Sparse Graphical Models
Background
Markov Networks
Learning and Inference in Markov Networks
Learning Sparse Gaussian MRFs

Sparse Matrix Factorization: Dictionary Learning and Beyond
Dictionary Learning
Sparse PCA
Sparse NMF for Blind Source Separation

Epilogue

Appendix: Mathematical Background

Bibliography

Index

A Summary and Bibliographical Notes appear at the end of each chapter.
"... an excellent introductory book for branching off into aspects of sparse modeling; it is also good for advanced students since it is contains an appendix with some of the mathematical background needed to learn from this book, including topics such as eigentheory, discrete Fourier transform, and subgaussian random variables. I very much recommend this book for researchers and students alike."
-Computing Reviews, May 2015


"A comprehensive, clear, and well-articulated book on sparse modeling. This book will stand as a prime reference to the research community for many years to come."
-Ricardo Vilalta, Department of Computer Science, University of Houston


"This book provides a modern introduction to sparse methods for machine learning and signal processing, with a comprehensive treatment of both theory and algorithms. Sparse Modeling is an ideal book for a first-year graduate course."
-Francis Bach, INRIA - Ecole Normale Superieure, Paris

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

94,89 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok