Mobile Health

Sensors, Analytic Methods, and Applications
 
 
Springer (Verlag)
  • erschienen am 12. Juli 2017
  • |
  • XL, 542 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-51394-2 (ISBN)
 
This volume provides a comprehensive introduction to mHealth technology and is accessible to technology-oriented researchers and practitioners with backgrounds in computer science, engineering, statistics, and applied mathematics. The contributing authors include leading researchers and practitioners in the mHealth field. The book offers an in-depth exploration of the three key elements of mHealth technology: the development of on-body sensors that can identify key health-related behaviors (sensors to markers), the use of analytic methods to predict current and future states of health and disease (markers to predictors), and the development of mobile interventions which can improve health outcomes (predictors to interventions). Chapters are organized into sections, with the first section devoted to mHealth applications, followed by three sections devoted to the above three key technology areas. Each chapter can be read independently, but the organization of the entire book provides a logical flow from the design of on-body sensing technology, through the analysis of time-varying sensor data, to interactions with a user which create opportunities to improve health outcomes. This volume is a valuable resource to spur the development of this growing field, and ideally suited for use as a textbook in an mHealth course.

1st ed. 2017
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 28
  • |
  • 100 farbige Abbildungen, 28 s/w Abbildungen
  • |
  • 28 schwarz-weiße und 100 farbige Abbildungen, Bibliographie
  • 12,19 MB
978-3-319-51394-2 (9783319513942)
331951394X (331951394X)
10.1007/978-3-319-51394-2
weitere Ausgaben werden ermittelt
James M. Rehg is a Professor of Computer Science at the Georgia Institute of Technology where he directs the Center for Behavioral Imaging and co-directs the Computational Perception Lab. Dr. Rehg's research focuses on computer vision, machine learning, and mobile health, with an emphasis on the analysis of video captured by wearable cameras for mobile health applications. He was the lead PI on an NSF Expedition to develop computational methods for measuring, modeling, and analyzing social and communicative behavior, with applications to developmental disorders such as autism. He is currently the Deputy Director of the NIH Center of Excellence on Mobile Sensor Data-to-Knowledge (MD2K), where he leads the Data Science Research Core.
Susan Murphy is the H.E. Robbins Distinguished University Professor of Statistics at the University of Michigan. Dr. Murphy's research focuses on improving sequential, individualized, decision making in health, in particular on clinical trial design and data analysis to inform the development of adaptive interventions (e.g. treatment policies). She currently works, as part of the MD2K team and other interdisciplinary teams, to develop clinical trial designs and learning algorithms in mobile health. She is a Fellow of the College on Problems in Drug Dependence, a former editor of the Annals of Statistics, President-Elect of the Bernoulli Society, a member of the US National Academy of Science, a member of the US National Academy of Medicine and a 2013 MacArthur Fellow.
Santosh Kumar is a Professor of Computer Science at the University of Memphis where he holds the Lillian & Morrie Moss Chair of Excellence. Dr. Kumar's research focusses on mobile health, with an emphasis on developing computational models to infer human health and behavior such as stress, conversation, smoking, and drug use from wearable sensor data. He is director of the NIH Center of Excellence on Mobile Sensor Data-to-Knowledge (MD2K), that involves over 20 scientists from in computing, engineering, behavioral science, and medicine. He was named one of America's ten most brilliant scientists under the age of 38 by Popular Science in 2010.
Introduction to Section 1: mHealth Applications and Tools.- StudentLife: Using Smartphone to Assess Mental Health and Academic Performance of College Students.- Circadian Computing: Sensing, Modeling, and Maintaining Biological Rhythms.- Design Lessons from a Micro-Randomized Pilot Study in Mobile Health.- The Use of Asset-Based Community Development in a Research Project Aimed at Developing mHealth Technologies for Older Adults.- Designing Mobile Health Technologies for Self-Monitoring: The Bit Counter as a Case Study.- mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data.- Introduction to Section II: Sensors to mHealth Markers.- Challenges and Opportunities in Automated Detection of Eating Activity.- Detecting Eating and Smoking Behavior Using Smartwatches.- Wearable Motion Sensing Devices and Algorithms for Precise Healthcare Diagnostics and Guidance.- Paralinguistic Analysis of Children's Speech in Natural Environments.- Pulmonary Monitoring Using Smartphones.- Wearable Sensing of Left Ventricular Function.- A new direction for Biosensing: RF sensors for monitoring cardio-pulmonary function.- Wearable Optical Sensors.- Introduction to Section III: Markers to mHealth Predictors.- Exploratory Visual Analytics of Mobile Health Data: Sensemaking Challenges and Opportunities.- Learning Continuous-Time Hidden Markov Models for Event Data.- Time-series Feature Learning with Applications to Healthcare Domain.- From Markers to Interventions: The Case of Just-in-Time Stress Intervention.- Introduction to Section IV: Predictors to mHealth Interventions.- Modeling Opportunities in mHealth Cyber-Physical Systems.- Control Systems Engineering for Optimizing Behavioral mHealth Interventions.- From Ads to Interventions: Contextual Bandits in Mobile Health.- Towards Health Recommendation Systems: An Approach for Providing Automated Personalized Health Feedback from Mobile Data.

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

154,69 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok