Advances in Ground-Source Heat Pump Systems

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 13. Mai 2016
  • |
  • 482 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100322-0 (ISBN)
 

Advances in Ground-Source Heat Pump Systems relates the latest information on source heat pumps (GSHPs), the types of heating and/or cooling systems that transfer heat from, or to, the ground, or, less commonly, a body of water.

As one of the fastest growing renewable energy technologies, they are amongst the most energy efficient systems for space heating, cooling, and hot water production, with significant potential for a reduction in building carbon emissions.

The book provides an authoritative overview of developments in closed loop GSHP systems, surface water, open loop systems, and related thermal energy storage systems, addressing the different technologies and component methods of analysis and optimization, among other subjects. Chapters on building integration and hybrid systems complete the volume.


  • Provides the geological aspects and building integration covered together in one convenient volume
  • Includes chapters on hybrid systems
  • Presents carefully selected chapters that cover areas in which there is significant ongoing research
  • Addresses geothermal heat pumps in both heating and cooling modes
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 14,12 MB
978-0-08-100322-0 (9780081003220)
0081003226 (0081003226)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Ground-Source Heat Pump Systems
  • Related titles
  • Advances in Ground-Source Heat Pump Systems
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • Preface
  • One - Closed-loop systems
  • 1 - An introduction to ground-source heat pump technology
  • 1.1 Introduction to the technology
  • 1.1.1 Heat pump principles
  • 1.1.2 Performance metrics
  • 1.1.3 Heat sources and sinks
  • 1.2 Historical developments and industry growth
  • 1.2.1 Early developments
  • 1.2.2 Technological and industrial development
  • 1.2.3 Factors in market development
  • 1.3 Current status and outlook
  • 1.3.1 The current state of ground-source heat pump deployment
  • 1.3.2 Carbon emissions reduction
  • 1.3.3 Outlook
  • References
  • 2 - Vertical borehole ground heat exchanger design methods
  • 2.1 Introduction
  • 2.2 Background: mathematical analysis of ground heat exchangers
  • 2.2.1 Analytical methods
  • 2.2.1.1 Infinite line source1
  • 2.2.1.2 Infinite cylinder source
  • 2.2.1.3 Finite line source
  • 2.2.2 Numerical methods
  • 2.2.3 Basic principles of response superposition
  • 2.2.4 Response functions (g-functions)
  • 2.3 Design methodologies-overview
  • 2.3.1 Classifying design methodologies
  • 2.3.1.1 Direct and iterative solutions
  • Time step resolution (levels 0-4)
  • Level 0: rules of thumb
  • Level 1: two pulses
  • Level 2: six pulses
  • Level 3: monthly and monthly peak pulses
  • Level 4: hourly simulation
  • 2.3.1.2 Ground heat transfer methodology
  • 2.3.1.3 Treatment of borehole thermal resistance
  • 2.3.1.4 Treatment of the heat pump
  • 2.3.1.5 Summary table
  • 2.3.2 Important inputs
  • 2.3.2.1 Undisturbed ground temperature
  • 2.3.2.2 Ground thermal properties
  • 2.3.2.3 Sensitivity of length to design temperature limits
  • 2.3.2.4 Loads: imbalanced or balanced
  • 2.4 g-function-based methods
  • 2.4.1 Using g-functions
  • 2.4.2 Methods for calculating g-functions
  • 2.5 ASHRAE handbook method
  • 2.5.1 Ground loads
  • 2.5.2 Effective ground thermal resistance
  • 2.5.3 Temperature penalty
  • 2.5.4 Pipe resistance
  • 2.5.5 Short circuit heat loss factor
  • 2.6 Improvements to the ASHRAE sizing method
  • 2.6.1 Different source for Tp
  • 2.6.2 Simpler form of the sizing equation
  • 2.6.3 Effective ground thermal resistances with g-functions
  • 2.7 Design of hybrid ground-source heat pump systems
  • 2.8 Conclusions and recommended future work
  • References
  • 3 - Calculation of borehole thermal resistance
  • 3.1 Introduction
  • 3.2 Borehole resistance
  • 3.3 Fluid-to-pipe wall resistance
  • 3.4 Grout resistance
  • 3.4.1 Equivalent radius methods
  • 3.4.2 Empirical formulas
  • 3.4.3 Multipole method-based approaches
  • 3.4.4 Comparison of different methods to calculate grout resistance
  • 3.5 Internal fluid-to-fluid resistance
  • 3.6 Effective borehole thermal resistance
  • 3.7 Other heat exchanger types
  • 3.8 Groundwater-filled boreholes
  • 3.9 Conclusions
  • Nomenclature
  • Acknowledgment
  • References
  • 4 - In situ estimation of ground thermal properties
  • 4.1 Introduction
  • 4.2 Background and development
  • 4.2.1 Field tests
  • 4.2.2 The line source model
  • 4.2.3 The cylinder source model
  • 4.2.4 Numerical models
  • 4.3 Test assumptions
  • 4.4 Equivalence with pumping tests
  • 4.5 Thermal response test in practice
  • 4.6 Desktop study
  • 4.7 Test borehole design and installation
  • 4.8 Selecting test parameters
  • 4.9 Test evaluation
  • 4.10 Quality of the test result
  • 4.11 Dealing with problems
  • 4.12 Summary
  • Symbols
  • References
  • 5 - Horizontal and compact ground heat exchangers
  • 5.1 Introduction
  • 5.1.1 Horizontal heat exchanger forms
  • 5.1.2 Advanced shallow ground heat exchangers
  • 5.1.3 Shallow ground conditions and heat transfer
  • 5.2 Shallow ground thermal properties
  • 5.2.1 Available property data
  • 5.2.1.1 Soil type identification
  • 5.2.1.2 Geomapping of thermal property data
  • 5.2.1.3 In situ conductivity testing
  • 5.3 Horizontal heat exchanger design methods
  • 5.3.1 The design task
  • 5.3.2 Background
  • 5.3.3 Design methodologies and standards
  • 5.4 Advances in modelling
  • 5.4.1 A hybrid analytical approach
  • 5.4.2 A hybrid numerical approach
  • 5.4.2.1 Discretisation and weighting factors
  • 5.4.2.2 Dynamic thermal network model boundary conditions
  • 5.4.2.3 Application of the dynamic thermal network model
  • 5.5 Summary
  • References
  • 6 - Analytical methods for thermal analysis of vertical ground heat exchangers
  • 6.1 Introduction
  • 6.2 A framework for analysis of heat transfer in ground heat exchangers
  • 6.2.1 Scale analysis
  • 6.2.2 General assumptions
  • 6.2.3 Formalization of key problem
  • 6.2.4 Duhamel's theorem
  • 6.3 Pure heat conduction solutions
  • 6.3.1 Conventional solutions for separate regions
  • 6.3.1.1 Solutions to heat transfer inside boreholes
  • 6.3.1.2 Solutions to heat transfer outside boreholes
  • 6.3.2 Short-term solutions
  • 6.3.3 Solutions for diverse time scales
  • 6.3.4 A comparison study of response functions
  • 6.4 Nonpure heat conduction solutions
  • 6.4.1 Diffusion-convection solutions
  • 6.4.2 Phase-change solutions
  • 6.5 Conclusions
  • References
  • 7 - Energy geostructures
  • 7.1 Introduction
  • 7.2 Energy piles
  • 7.2.1 Concept
  • 7.2.2 Thermal behaviour of energy piles
  • 7.2.2.1 Energy piles have small length-diameter ratios
  • 7.2.2.2 Heat transfer takes time to reach to the soil medium in large diameter energy piles
  • 7.2.2.3 Energy piles have many loops
  • 7.2.3 Mechanical behaviour of energy piles
  • 7.2.3.1 Basics: free expansion versus full restraint
  • 7.2.3.2 Soil resistance
  • 7.2.3.3 Design considerations
  • 7.3 Energy walls
  • 7.3.1 Concept
  • 7.3.2 Thermal behaviour of energy walls
  • 7.3.3 Mechanical behaviour of energy walls
  • 7.4 Energy tunnels
  • 7.4.1 Concept
  • 7.4.2 Thermal behaviour of energy tunnels
  • 7.4.3 Mechanical behaviour of energy tunnels
  • 7.5 Conclusions
  • References
  • Two - Open-loop systems and energy storage
  • 8 - Surface water heat pump systems
  • 8.1 Introduction
  • 8.2 Design data
  • 8.3 Physics and modeling of surface water bodies
  • 8.3.1 Physics of lakes and reservoirs
  • 8.3.2 Modeling of lakes and reservoirs
  • 8.3.3 Rivers
  • 8.4 Open-loop systems: surface water heat pumps and direct surface water cooling
  • 8.4.1 Open-loop surface water heat pump systems
  • 8.4.2 Hybrid surface water heat pump systems
  • 8.5 Major system components
  • 8.5.1 Intake piping and screening
  • 8.5.2 Pumps and pumping configurations/dry sumps, wet sumps
  • 8.5.3 Isolation heat exchangers
  • 8.5.4 Heat pumps and chillers
  • 8.5.5 Return piping and discharge
  • 8.6 Closed-loop systems
  • 8.6.1 Surface water heat exchanger types
  • 8.6.1.1 Bottom sediment heat exchangers
  • 8.6.1.2 High-density polyethylene piping bundles
  • 8.6.1.3 Flat plate heat exchangers
  • 8.6.1.4 Other surface water heat exchanger types
  • 8.7 Closed-loop design considerations
  • 8.8 Conclusions
  • References
  • 9 - Open-loop heat pump and thermal energy storage systems
  • 9.1 Introduction
  • 9.2 Site information and modelling
  • 9.2.1 Aquifer characteristics
  • 9.2.1.1 Groundwater flow
  • 9.2.1.2 Groundwater composition
  • 9.2.2 Site investigation
  • 9.2.2.1 Test boring
  • 9.2.2.2 Pumping test
  • 9.2.2.3 Cone penetration test
  • 9.2.2.4 Sampling existing piezometers
  • 9.2.3 Modelling tools
  • 9.3 Design and construction
  • 9.3.1 Well design
  • 9.3.1.1 Unconsolidated sediments
  • 9.3.1.2 Rock aquifers
  • 9.3.2 Well field design
  • 9.3.2.1 Thermal interference
  • 9.3.2.2 Hydraulic impact
  • 9.3.2.3 Thermal impact
  • 9.3.3 Well drilling, completion and development
  • 9.3.3.1 Well drilling
  • 9.3.3.2 Well completion
  • 9.3.3.3 Well development
  • 9.3.4 Groundwater loop design
  • 9.3.4.1 Air tightness
  • 9.3.4.2 Flow control
  • 9.3.4.3 Choice of materials
  • 9.4 System operation
  • 9.4.1 System efficiency
  • 9.4.1.1 Monitoring
  • 9.4.1.2 Maintenance
  • 9.5 Evaluation
  • References
  • 10 - Standing column wells
  • 10.1 Introduction
  • 10.1.1 Overview
  • 10.1.2 Design considerations
  • 10.1.2.1 Installation practices
  • 10.1.2.2 Bleed control strategies
  • 10.1.2.3 Discharge point
  • 10.1.2.4 Water quality
  • 10.1.3 Potential
  • 10.1.4 Outline
  • 10.2 Thermal and hydraulic simulation
  • 10.2.1 Modeling of SCW
  • 10.2.2 Dynamic simulations
  • 10.2.3 Effect of design parameters
  • 10.2.3.1 Well depth
  • 10.2.3.2 Well diameters
  • 10.2.3.3 Maximum bleed ratio
  • 10.2.4 Presence of fractures
  • 10.3 Coupled geochemical simulation
  • 10.3.1 Transport and geochemical reactions
  • 10.3.2 Reaction kinetics for calcite
  • 10.3.3 Equilibrium reactions for calcite
  • 10.3.4 Coupled simulation of an SCW
  • 10.4 Conclusions
  • Nomenclature
  • Acknowledgment
  • References
  • 11 - Borehole thermal energy storage
  • 11.1 Introduction
  • 11.1.1 Definition of borehole thermal energy storage
  • 11.1.2 Some borehole thermal energy storage history
  • 11.2 Typical features of borehole thermal energy storage
  • 11.2.1 Ground properties and storage
  • 11.2.2 Ground heat exchangers
  • 11.2.3 Storage geometry
  • 11.2.4 Groundwater flow
  • 11.2.5 Storage temperature
  • 11.3 Environmental aspects
  • 11.3.1 Risks related to temperature
  • 11.3.2 Risks related to geology and geohydrology
  • 11.3.3 Risks related to construction
  • 11.3.4 Regulation to protect the environment
  • 11.4 Worldwide borehole thermal energy storage applications
  • 11.4.1 High-temperature solar heat storage
  • 11.4.2 High-temperature industrial heat storage
  • 11.4.3 Low-temperature solar heat storage
  • 11.4.4 Low-temperature storage for heating and cooling
  • 11.4.5 Low-temperature combined systems
  • 11.5 Conclusions
  • References
  • Three - Building integration and hybrid systems
  • 12 - Hybrid ground-source heat pump systems
  • 12.1 The hybrid ground-source heat pump concept
  • 12.2 Hybrid ground-source heat pump system types
  • 12.2.1 Cooling towers
  • 12.2.2 Air source
  • 12.2.3 Waste heat
  • 12.2.4 Solar
  • 12.2.5 Boiler
  • 12.3 Optimization of hybrid ground-source heat pump
  • 12.3.1 Optimal control strategies
  • 12.3.2 Optimization of ground heat exchanger and supplemental equipment capacities
  • 12.3.3 Optimal loop configuration
  • 12.4 Efficiency and cost
  • 12.5 Conclusion
  • Acknowledgment
  • References
  • 13 - New trends and developments in ground-source heat pumps
  • 13.1 Introduction
  • 13.2 Ground-source heat pump performance
  • 13.2.1 Full load performance
  • 13.2.2 Part load performance
  • 13.3 Compressors for ground-source heat pumps
  • 13.3.1 Compressor technology: scroll, rotary, piston
  • 13.3.2 Optimal pressure ratio
  • 13.3.3 Fixed speed, tandem, variable speed
  • 13.4 New refrigerants
  • 13.4.1 Current use of refrigerants for heat pumps
  • 13.4.2 Natural fluids for heat pump applications
  • 13.4.3 Refrigerant charge minimization
  • 13.5 GSHP heat exchangers
  • 13.5.1 Liquid to refrigerant heat exchangers
  • 13.5.2 Refrigerant-to-air heat exchangers
  • 13.5.3 Ground-source heat pump with domestic hot water production
  • 13.6 Dual source heat pumps
  • 13.7 Conclusion
  • References
  • 14 - Heat pump modelling
  • 14.1 Introduction
  • 14.2 Steady-state modelling of the vapour compression cycle
  • 14.2.1 The condenser and evaporator
  • 14.2.2 Expansion devices
  • 14.2.3 Compressors
  • 14.2.4 Solution methods in the steady state
  • 14.2.4.1 Application case study: domestic-scale heat pump
  • 14.3 Vapour absorption cycle
  • 14.3.1 Application case study - higher temperature heat pump
  • 14.4 Regression models
  • 14.4.1 Models fitted to catalogue data
  • 14.4.2 Models fitted to laboratory and field data
  • 14.5 Dynamic-state modelling
  • 14.5.1 Block diagram modelling with transfer functions
  • 14.5.2 Distributed parameter modelling
  • 14.5.2.1 Heat exchanger wall
  • 14.5.2.2 Source and sink fluid zones
  • 14.5.2.3 Heat transfer
  • 14.5.2.4 Expansion device and compressor
  • 14.5.2.5 Application of the distributed heat pump model - an illustration
  • 14.6 Conclusions
  • Symbols
  • References
  • 15 - Geothermally activated building structures
  • 15.1 What are geothermally activated building structures (GEOTABS)?
  • 15.1.1 GEOTABS concept
  • 15.1.2 Thermally activated building systems
  • 15.2 Geothermally activated building structures as a global system concept
  • 15.3 Building design as a crucial part in the geothermally activated building structure concept
  • 15.4 System integration
  • 15.5 Advances in (optimal) control of geothermally activated building structures
  • 15.6 Model predictive control of hybrid GEOTABS systems: a simulation study
  • 15.7 Model predictive control of geothermally activated building structure offices: a case study
  • 15.8 Optimal exploitation of ground thermal energy storage on the long term
  • 15.9 Joining the forces of slow thermally activated building systems and fast air handling units
  • 15.10 Conclusions and outlook
  • Acknowledgements
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok