Mastering Social Media Mining with R

 
 
Packt Publishing Limited
  • 1. Auflage
  • |
  • erschienen am 23. September 2015
  • |
  • 248 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-78439-967-2 (ISBN)
 
Extract valuable data from your social media sites and make better business decisions using RAbout This BookExplore the social media APIs in R to capture data and tame itEmploy the machine learning capabilities of R to gain optimal business valueA hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media dataWho This Book Is ForIf you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful.What You Will LearnAccess APIs of popular social media sites and extract dataPerform sentiment analysis and identify trending topicsMeasure CTR performance for social media campaignsImplement exploratory data analysis and correlation analysisBuild a logistic regression model to detect spam messagesConstruct clusters of pictures using the K-means algorithm and identify popular personalities and destinationsDevelop recommendation systems using Collaborative Filtering and the Apriori algorithmIn DetailWith an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of &quote;standard&quote; statistical packages simplify analysis of the data.This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming.With this handy guide, you will be ready to embark on your journey as an independent social media analyst.Style and approachThis easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.
  • Englisch
  • Birmingham
  • |
  • Großbritannien
978-1-78439-967-2 (9781784399672)
1784399671 (1784399671)
weitere Ausgaben werden ermittelt
Sharan Kumar Ravindran is a data scientist with over five years of experience. He is currently working for a leading e-commerce company in India. His primary interests lie in statistics and machine learning, and he has worked with customers from Europe and the U.S. in the e-commerce and IoT domains.
He holds an MBA degree with specialization in marketing and business analysis. He conducts workshops for Anna University to train their staff, research scholars, and volunteers in analytics.
In addition to coauthoring Social Media Mining with R, he has also reviewed R Data Visualization Cookbook. He maintains a website, www.rsharankumar.com, with links to his social profiles and blog. Vikram Garg ( @vikram_garg) is a senior analytical engineer at a Big Data organization. He is passionate about applying machine learning approaches to any given domain and creating technology to amplify human intelligence. He completed his graduation in computer science and electrical engineering from IIT, Delhi. When he is not solving hard problems, he can be found playing tennis or in a swimming pool.
  • Cover
  • Copyright
  • Credits
  • About the Authors
  • About the Reviewers
  • www.PacktPub.com
  • Table of Contents
  • Preface
  • Chapter 1: Fundamentals of Mining
  • Social media and its importance
  • Various social media platforms
  • Social media mining
  • Challenges for social media mining
  • Social media mining techniques
  • Graph mining
  • Text mining
  • The generic process of social media mining
  • Getting authentication from the social website - OAuth 2.0
  • Differences between OAuth and OAuth 2.0
  • Data visualization R packages
  • The simple word cloud
  • Sentiment analysis Wordcloud
  • Preprocessing and cleaning in R
  • Data modeling - the application of mining algorithms
  • Opinion mining (sentiment analysis)
  • Steps for sentiment analysis
  • Community detection via clustering
  • Result visualization
  • An example of social media mining
  • Summary
  • Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter
  • Twitter and its importance
  • Understanding Twitter's APIs
  • Twitter vocabulary
  • Creating a Twitter API connection
  • Creating a new app
  • Finding trending topics
  • Searching tweets
  • Twitter sentiment analysis
  • Collecting tweets as a corpus
  • Cleaning the corpus
  • Estimating sentiment (A)
  • Estimating sentiment (B)
  • Summary
  • Chapter 3: Find Friends on Facebook
  • Creating an app on the Facebook platform
  • Rfacebook package installation and authentication
  • Installation
  • A closer look at how the package works
  • A basic analysis of your network
  • Network analysis and visualization
  • Social network analysis
  • Degree
  • Betweenness
  • Closeness
  • Cluster
  • Communities
  • Getting Facebook page data
  • Trending topics
  • Trend analysis
  • Influencers
  • Based on a single post
  • Based on multiple posts
  • Measuring CTR performance for a page
  • Spam detection
  • Implementing a spam detection algorithm
  • The order of stories on a user's home page
  • Recommendations to friends
  • Reading the output
  • Other business cases
  • Summary
  • Chapter 4: Finding Popular Photos on Instagram
  • Creating an app on the Instagram platform
  • Installation and authentication of the instaR package
  • Accessing data from R
  • Searching public media for a specific hashtag
  • Searching public media from a specific location
  • Extracting public media of a user
  • Extracting user profile
  • Getting followers
  • Who does the user follow?
  • Getting comments
  • Number of times hashtag is used
  • Building a dataset
  • User profile
  • User media
  • Travel-related media
  • Who do they follow?
  • Popular personalities
  • Who has the most followers?
  • Who follows more people?
  • Who shared most media?
  • Overall top users
  • Most viral media
  • Finding the most popular destination
  • Locations
  • Locations with most likes
  • Locations most talked about
  • What are people saying about these locations?
  • Most repeating locations
  • Clustering the pictures
  • Recommendations to the users
  • How to do it
  • Top three recommendations
  • Improvements to the recommendation system
  • Business case
  • Reference
  • Summary
  • Chapter 5: Let's Build Software with GitHub
  • Creating an app on GitHub
  • GitHub package installation and authentication
  • Accessing GitHub data from R
  • Building a heterogeneous dataset using the most active users
  • Data processing
  • Building additional metrics
  • Exploratory data analysis
  • EDA - graphical analysis
  • Which language is most popular among the active GitHub users?
  • What is the distribution of watchers, forks, and issues in GitHub?
  • How many repositories had issues?
  • What is the trend on updating repositories?
  • Compare users through heat map
  • EDA - correlation analysis
  • How Watchers is related to Forks
  • Correlation with regression line
  • Correlation with local regression curve
  • Correlation on segmented data
  • Correlation between the languages that user's use to code
  • How to get the trend of correlation?
  • Reference
  • Business cases
  • Summary
  • Chapter 6: More Social Media Websites
  • Searching on social media
  • Accessing product reviews from sites
  • Retrieving data from Wikipedia
  • Using the Tumblr API
  • Accessing data from Quora
  • Mapping solutions using Google Maps
  • Professional network data from LinkedIn
  • Getting Blogger data
  • Retrieving venue data from Foursquare
  • Use cases
  • Yelp and other networks
  • Limitations
  • Summary
  • Index

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

28,05 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok