Sorghum Biochemistry

An Industrial Perspective
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 8. September 2016
  • |
  • 358 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803182-7 (ISBN)
 

Sorghum Biochemistry: An Industrial Perspective explores the many uses for sorghum in industry and biofuels. Not only does it offer a detailed understanding of the physical and biochemical qualities of the grain, it also takes an in-depth look at the role sorghum plays in such industries as brewing and ethanol production and the mechanics of post-harvest processing and value addition.

Sorghum has long been an important staple in Africa and Asia, but its value goes far beyond its uses in human and animal consumption. Sorghum is also used in many industries, including waxes, packing material, wall board, ethanol, beverages, and brewing, and one variety called sweet sorghum has also been used as a bioenergy crop. Sorghum Biochemistry: An Industrial Perspective offers a closer look at how the grain is used in such a variety of ways, and how we can continue to optimize its potential.

  • Provides detailed biochemical studies on grain sorghum to inform researchers grappling with similar issues
  • Offers foundational information on the quality and composition of sorghum as a grain
  • Covers a variety of uses for sorghum in many industries, including food and beverage, energy, and brewing
  • Includes photos and illustrations to enhance the understanding of processes and sorghum biochemistry


Dr. Ratnavathi has a PhD in Biochemistry from Osmani University, and currently serves as the Principal Investigator on the NFBSFARA project on 'Studies on sucrose accumulation in sweet sorgum for efficient ethanol production," while also leading a research project from the DBT on the therapeutic properties of sorghum. He has led several other externally funded projects and was instrumental in establishing a food safety laboratory under the NAIP Millet Value chain project. He has developed 30 sorghum recipes and 10 semi-processed products, and has published numerous journal articles, books, and book chapters.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 6,30 MB
978-0-12-803182-7 (9780128031827)
0128031824 (0128031824)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Sorghum Biochemistry: An Industrial Perspective
  • Copyright Page
  • Contents
  • Biography
  • C.V. Ratnavathi, PhD
  • J.V. Patil, PhD
  • U.D. Chavan, PhD
  • Introduction
  • References
  • 1 Sorghum Grain Quality
  • 1.1 Introduction
  • 1.1.1 Sorghum Species
  • 1.1.2 Grain Quality
  • 1.1.3 Sorghum Kernel Structure
  • 1.1.4 Physical Characters
  • 1.1.5 Biochemical Parameters
  • 1.1.6 Protein Estimation
  • 1.1.7 Protein Body and Protein Matrix Characteristics of Sorghum
  • 1.1.8 Digestibility of Uncooked Sorghum Proteins
  • 1.1.9 Determination of Protein Digestibility
  • 1.1.10 Variation in Protein Digestibility
  • 1.1.11 Starch
  • 1.1.12 Amylose
  • 1.1.13 Amylose Estimation
  • 1.1.14 Amylopectin
  • 1.1.15 Starch Granule Structure
  • 1.1.16 Starch Estimation
  • 1.1.17 Starch Digestibility of Raw Sorghum Grain
  • 1.1.18 Starch Digestibility
  • 1.1.19 Starch Digestibility With and Without Protease Pretreatment
  • 1.1.19.1 Starch Digestibility Without Protease Pretreatment of Sorghum Genotypes
  • 1.1.19.2 Starch Digestibility With Protease Pretreatment of Sorghum Genotypes
  • 1.1.20 Influence of Protein Predigestion on Starch Digestibility of Sorghum Genotypes
  • 1.1.21 Fat Estimation
  • 1.1.22 Tannins and Phenols of Sorghum Grain
  • 1.1.23 Extraction of Polyphenols
  • 1.1.24 Prussian Blue Assay
  • 1.1.25 Phenolic Compounds and Antioxidant Activity of Sorghum Grains of Varying Genotypes
  • 1.1.26 Phytic Acid Estimation
  • 1.1.27 Phytochemical Agents
  • 1.1.28 Sorghum Phytochemicals and Their Impact on Human Health
  • 1.2 Comparison with Other Cereals
  • 1.2.1 Alternative Uses of Sorghum
  • 1.2.2 Human Food
  • 1.2.3 Animal Feed
  • 1.2.4 India
  • 1.2.5 China
  • 1.2.6 West Africa
  • 1.2.7 Eastern and Southern Africa
  • 1.3 Dough and Roti Making Quality of Sorghum
  • 1.3.1 Dough Quality
  • 1.3.2 Roti Quality
  • 1.3.3 Traditional Food Products of Sorghum and Their Commercialization
  • 1.3.4 Noodles
  • 1.3.5 Low Calorie-Low Fat Cookies
  • 1.3.6 Sorghum Health Benefits
  • References
  • Further Reading
  • 2 Malting and Brewing of Sorghum
  • 2.1 Introduction
  • 2.2 Use of Sorghum as Malt
  • 2.3 Malting Studies
  • 2.3.1 Amylolytic Activity
  • 2.3.2 Dry Matter Loss
  • 2.3.3 Proximate Composition
  • 2.3.4 Soluble Proteins
  • 2.4 Sugars and Starch
  • 2.4.1 Starch and Protein Digestibility
  • 2.5 Lager Beer From 100% Sorghum
  • 2.6 Use of Sorghum as Adjunct
  • 2.6.1 Malting and Brewing
  • 2.7 Nonalcoholic Beverages and Weaning Foods
  • 2.8 Fermentation
  • 2.8.1 Prefermentation Processing of Cereals
  • 2.8.2 Fermented Cereals
  • 2.8.3 Indigenous Fermented Cereal Foods
  • 2.8.4 Importance and Advantages/Benefits of Fermented Cereals
  • 2.9 Fermentation Studies
  • 2.9.1 Changes in pH and Titrable Acidity
  • 2.9.2 Changes in Total Soluble Solids (TSS) and Dry Weight
  • 2.9.3 Changes in Composition
  • 2.9.4 Changes in Tryptophan and Methionine
  • 2.9.5 Changes in Starch and Sugars
  • 2.9.6 Changes in IVPD
  • 2.10 Use of Malted and Fermented Meals in Bhakari/Roti Making
  • 2.10.1 Water Uptake, Dough Rollability, and Moisture Loss
  • 2.10.2 Organoleptic Evaluation of Bhakari/Roti
  • 2.11 Summary
  • References
  • Further Reading
  • 3 Mycotoxin Contamination in Sorghum
  • 3.1 Introduction
  • 3.1.1 Natural Occurrence of Mycotoxins in Sorghum
  • 3.1.1.1 Status of AFB1 Contamination
  • 3.1.1.2 Status of FB1 Contamination
  • 3.1.1.3 Status of OTA Contamination
  • 3.2 In Vitro Studies on the Aflatoxin Elaboration in Sorghum Through Aspergillus parasiticus
  • 3.2.1 Substrate Suitability of Sorghum Genotypes to Fungal Infestations
  • 3.2.1.1 Preparation of Samples
  • 3.2.1.2 Statistical Analysis
  • 3.2.1.3 Status of Aflatoxin Production
  • 3.2.1.4 Red Sorghum
  • 3.2.1.5 Yellow Sorghum
  • 3.2.1.6 White Sorghum
  • 3.2.1.7 Maize and Groundnut
  • 3.2.1.8 Ergosterol Production
  • 3.3 Physical and Chemical Characteristics of Deteriorated Sorghum Grain
  • 3.3.1 Physical Characteristics
  • 3.3.2 Chemical Characteristics
  • 3.4 Enzymatic Changes in Sorghum Genotypes During A. Parasiticus (NRRL 2999) Infestation
  • 3.4.1 Preparation of the Sample
  • 3.4.1.1 a- and ß-Amylase Activity
  • 3.4.1.2 a-Amylase
  • 3.4.1.3 ß-Amylase
  • 3.4.1.4 Protease Activity
  • 3.4.1.4.1 Status of Protease Activity
  • 3.4.1.5 Lipase
  • 3.4.1.5.1 Statistical Analysis
  • 3.4.1.6 Status of Lipase Activity
  • 3.5 Inhibitory Effect of Phenolics Extracted from Sorghum Genotypes on the Growth of A. parasiticus (NRRL 2999) and Aflatox...
  • 3.5.1 Materials
  • 3.5.2 Chemicals
  • 3.5.3 Fungal Strain
  • 3.5.4 Preparation of Samples
  • 3.5.5 Estimation of Polyphenols and Total Phenols
  • 3.5.6 Polyphenol Oxidase Assay
  • 3.5.7 Statistical Analysis
  • 3.5.8 Aflatoxin Elaboration in Acidic Methanol Treated Grains
  • 3.5.9 Effect of Addition of Extracted Phenolics (Extracted From Sorghum Genotypes) on the Growth of A. parasiticus (NRRL 29...
  • 3.5.10 0.01% Level of Phenolics
  • 3.5.11 0.1% Phenolics Level
  • 3.6 Induction of Chitinase in Response to Aspergillus Infection in Sorghum
  • 3.6.1 Experimental Materials
  • 3.6.2 Detection of Chitinase Activity After PAGE Under Native Conditions
  • 3.6.3 Chitinase Assay
  • 3.6.4 Assay Procedure
  • 3.6.5 Levels of Chitinase Activity
  • 3.6.6 Red Sorghum
  • 3.6.7 Yellow Sorghum
  • 3.6.8 White Sorghum
  • 3.6.9 Aflatoxin Levels
  • 3.7 Inhibition of AFB1 Production by an Antifungal Component, Eugenol on Sorghum Grains
  • 3.7.1 Isolation of A. flavus strains and AFB1 production
  • 3.7.2 In Vitro Screening of Sorghum Cultivars
  • 3.7.3 Inhibition of AFB1 Production by an Antifungal Component, Eugenol
  • 3.7.4 Determination of Starch and Protein
  • 3.7.4.1 Protein
  • 3.7.4.2 Starch
  • 3.7.5 Statistical Analysis
  • 3.8 Pearling of Black Sorghum
  • 3.8.1 Pearling of Black Sorghum by Physic-Chemical Methods and Its Utilization
  • 3.8.1.1 Introduction
  • 3.8.1.1.1 Degree of Moldiness/Blackening in Promising Sorghum Cultivars
  • 3.8.1.1.2 Effect of Blackening on Physico-Chemical Properties
  • 3.8.1.1.3 Relationship Between Blackening Intensity and Grain Peroxidase Activity
  • 3.8.1.1.4 Standardization of Technique for Separation of Light-Weight Blackened Grains
  • 3.8.1.1.5 Standardization of Pearling Treatment
  • 3.8.1.1.6 Effect of Pearling on Nutrient Composition of Black Sorghum
  • 3.8.1.1.7 Chemical Dehulling of Black Sorghum
  • 3.8.1.1.8 Identification of Molds on Black Sorghum and Aflatoxin Content
  • 3.8.1.1.9 Effect of Storage on Shelf-Life of Black and Pearled Sorghum
  • 3.8.1.1.10 Utilization of Pearled Sorghum
  • 3.8.1.1.11 Summary
  • References
  • 4 Sorghum Uses-Ethanol
  • 4.1 Introduction
  • 4.2 History of Sweet Sorghum
  • 4.3 Distribution of Sweet Sorghum
  • 4.4 Productivity of Sweet Sorghum
  • 4.5 Accumulation of Dry Matter in Sweet Sorghum
  • 4.6 Sucrose Metabolism in Sweet Sorghum
  • 4.7 Agronomy of Sweet Sorghum
  • 4.8 Maximization of Biomass in Sweet Sorghum Through Genetic Enhancement of Sweet Sorghum
  • 4.9 Maximization of Biomass in Sweet Sorghum
  • 4.9.1 Time of Sowing Trial
  • 4.10 Resistance to Diseases and Pests
  • 4.11 Evaluation of Sweet Sorghum Genotypes for Resistance to Key Pests (Shoot Fly, Corn Plant Hopper, and Stem Borer) in Re...
  • 4.12 Genetic Improvement of Sweet Sorghum
  • 4.13 Genetic Variability
  • 4.14 Culm Characteristics
  • 4.15 Juice Yield and Quality
  • 4.16 Studies on Juice Quality (NRCS, Hyderabad)
  • 4.17 Improvements Achieved in Juice Quality of Sweet Sorghum: Determination of Sucrose in Sweet Sorghum
  • 4.18 Juice Quality in Sweet Sorghum at Different Crop Growth Stages
  • 4.19 Juice Quality in Sweet Sorghum as a Vegetative Crop
  • 4.20 Phenology and Biomass Productivity
  • 4.21 Grain Yield
  • 4.22 Grain Quality
  • 4.23 Resistance to Diseases and Pests
  • 4.24 Resistance to Stress Conditions
  • 4.25 Easy to Strip Stalk
  • 4.26 Futuristic Crop Model
  • 4.27 Status of Sweet Sorghum Breeding
  • 4.28 Utilization of Sweet Sorghum
  • 4.29 Stalk Processing
  • 4.30 Crop Retention and Stalk Storage
  • 4.31 Fermentation
  • 4.32 Ethanol Yield
  • 4.33 Alcohol from Sweet Sorghum (NRCS, Hyderabad)
  • 4.34 Recovery of Ethanol at Different Crop Growth Stages With Different Yeast Strains (NRCS, Hyderabad)
  • 4.35 Total Alcohol Recovery (Stalk and grain) in Sweet Sorghum (PDKV, Akola)
  • 4.36 Pilot Scale Evaluation of Ethanol Production From Sweet Sorghum Stalk Juice (NRCS, Hyderabad)
  • 4.37 SWOT Analysis on Production of Ethanol From Sweet Sorghum (NRCS, Hyderabad)
  • 4.38 Ethanol Production From Damaged Grain
  • 4.39 Sorghum Grain-Based Potable Alcohol - Global Experiences
  • 4.40 Dynamics of Ethanol Utilization in Various Demand Quarters
  • 4.41 Feedstocks for Manufacturing of Ethanol-An Overview
  • 4.41.1 Saccharine
  • 4.41.2 Starchy Materials
  • 4.41.3 Cellulose Materials
  • 4.41.4 Grain-Based Ethanol Production Technology
  • 4.42 Technical Suitability of Molded Sorghum Grain in Ethanol Production
  • 4.43 Economic Prospects of Alcohol Production from Sorghum Grain
  • 4.44 Effluent/Waste Water Treatment for Grain Alcohol Distillery
  • 4.45 Biomethanation, Aeration, and Ferti-Irrigation
  • 4.46 Value-Added Product: DDGS
  • 4.47 Marketing Chain of Sorghum Grain
  • 4.48 Advantages Accruing from Backward Integration
  • 4.49 SWOT Analysis of Sorghum Grain as Raw Material for Potable Alcohol
  • 4.49.1 Strengths
  • 4.49.2 Weaknesses
  • 4.49.3 Opportunities
  • 4.49.4 Threats Possible Solutions
  • 4.50 New Initiatives
  • 4.51 Conclusions
  • 4.52 Recommendations on the Industrial Uses of Molded Sorghum Grain
  • 4.53 Energy Balance in Bioenergy Production
  • 4.54 Sugar Production
  • 4.55 Sweet Sorghum for Grain and Fodder
  • References
  • Further Reading
  • 5 Sorghum Syrup and Other by Products
  • 5.1 Introduction
  • 5.2 Syrup Production
  • 5.3 Processing of Syrup
  • 5.3.1 Juice Extraction
  • 5.4 Production of Natural Syrup From Sweet Sorghum Stalk Juice (NARI, Phaltan, India) (Small Scale)
  • 5.5 Analysis of Sample of Madhura by CFTRI, Mysore and ITALAB Pvt. Ltd., Mumbai
  • 5.6 Manufacturing the Syrup (Large Scale)
  • 5.7 Filtering and Settling the Juice
  • 5.8 Evaporating the Juice
  • 5.9 Concentrating the Syrup
  • 5.10 Finishing the Syrup
  • 5.11 Semi Syrup
  • 5.12 Care of the Evaporator
  • 5.13 General Sanitation
  • 5.14 Labeling Your Containers
  • 5.15 Using Enzymes for Processing Syrup
  • 5.15.1 Gelling
  • 5.15.2 Enzymes
  • 5.15.3 Methods to Prevent Gelling
  • 5.15.4 Crystallization
  • 5.15.5 Methods for Using Invertase
  • 5.15.6 Note About Enzymes
  • 5.15.7 Health Benefits of Syrup
  • 5.16 Enzymes
  • 5.16.1 a-Amylase, Glucoamylase, and Glucoisomerase
  • 5.17 Enzyme Activity
  • 5.17.1 a-Amylase
  • 5.17.2 Glucoamylase
  • 5.17.3 Glucoamylase, Transglucocidase, and ß-Amylase in Glucoamylase
  • 5.17.4 Glucose Isomerase
  • 5.18 Starch Isolation and methods adopted
  • 5.18.1 Proximate Composition of Sorghum Grains
  • 5.18.2 Isolation and Production Kinetics of Starch From Sorghum Grains
  • 5.18.2.1 Starch Isolation
  • 5.18.2.1.1 Standardization of Suitable Process for the Extraction and Recovery of Starch From Molded and Blackened Sorghum ...
  • 5.18.2.1.1.1 Extraction and Recovery of Starch
  • 5.18.3 Standardization of Starch Production From Sorghum Grains
  • 5.18.4 Effect of Soaking Temperature on the Yield of Starch
  • 5.18.5 Effect of Soaking Time on the Yield of Starch Sorghum Grains
  • 5.18.6 Standardization of Production of Glucose Syrup From Sorghum Starch by Acid Hydrolysis
  • 5.18.7 Standardization of Dextrinization of Sorghum Starch Using a-Amylase
  • 5.18.8 Standardization of Production of Glucose Syrup From Sorghum Starch Using Acid Hydrolysis Followed by a-Amylolytic De...
  • 5.18.9 Saccharification of Starch
  • 5.18.10 Preparation of Immobilized Glucoamylase on DEAE-Cellulose
  • 5.18.11 Effect of Glucoamylase Concentration on the Release of Glucose From Liquefied Starch
  • 5.19 Estimation of Glucose
  • 5.19.1 Paper Chromatography
  • 5.19.1.1 Qualitative Estimation of Sugars
  • 5.19.1.2 Quantitative Estimation of Glucose
  • 5.19.2 Thin Layer Chromatography
  • 5.19.3 Gas Liquid Chromatography
  • 5.19.4 Carbon-Celite Chromatography
  • 5.19.5 Preparation of Immobilized Glucose Isomerase on DEAE Cellulose
  • 5.19.6 Effect of Glucose Isomerase Concentration on the Release of Fructose From Glucose Syrup
  • 5.19.7 Production of High Fructose Syrup From Rain Damaged Sorghum Grains
  • 5.19.7.1 Chemical Composition of Sorghum Grains
  • 5.19.8 Isolation and Standardization of Starch From Sorghum Grains
  • 5.19.8.1 Chemical Composition of Starch
  • 5.19.9 Studies on Standardization of Dextrinization of Starch With Acid
  • 5.19.9.1 Effect of Acid Concentration on the Dextrinization of Starch by Acid
  • 5.19.9.2 Effect of Starch Concentration on the Dextrinization of Starch by Acid
  • 5.19.9.3 Effect of Temperature on the Dextrinization of Starch by Acid
  • 5.19.9.4 Effect of Time on the Dextrinization of Starch by Acid
  • 5.19.10 Studies on Standardization of Dextrinization of Starch by a-Amylase
  • 5.19.10.1 Effect of Starch Concentration on the Dextrinization of Starch by a-Amylase
  • 5.19.10.2 Effect of a-Amylase Concentration on the Dextrinization of Starch by a-Amylase
  • 5.19.11 Standardization of Saccharification of Starch
  • 5.19.11.1 Effect of Percent Dry Solids of Dextrin Syrup of Sorghum Starch on Saccharification by Glucoamylase
  • 5.19.11.2 Effect of Enzyme Concentration on Saccharification of Sorghum Starch by Glucoamylase
  • 5.19.11.3 Effect of Time on Saccharification of Sorghum Starch by Glucoamylase
  • 5.19.11.4 Effect of Temperature on Saccharification of Sorghum Starch by Glucoamylase
  • 5.20 Starch and Maltodextrin From Sorghum
  • 5.21 Glucose and High Fructose Syrup
  • 5.21.1 Production of Glucose Syrup by Saccharification Using Native Glucoamylase at Optimum Condition
  • 5.21.2 Production of High Fructose Syrup From Sweet Sorghum Juice
  • 5.21.3 Production of High Fructose Syrup From Juice of Sweet Sorghum Genotype
  • 5.21.4 Variation in the Production of Glucose Syrup on the Saccharification Using Immobilized Glucoamylase During Recycling...
  • 5.22 Studies on Standardization of Isomerization of Glucose Syrup
  • 5.22.1 Effect of Enzyme Concentration on Isomerization of Glucose Syrup by Glucose Isomerase
  • 5.22.2 Effect of Temperature on Isomerization of Glucose Syrup by Glucose Isomerase
  • 5.22.3 Effect of pH on Isomerization of Glucose Syrup by Glucose Isomerase
  • 5.22.4 Studies on the Production of Sorbitol From Purified Sorghum Starch Glucose
  • 5.22.5 Production of Sorbitol From Sorghum Starch
  • 5.22.6 Properties of Sorbitol
  • References
  • Further Reading
  • 6 Sorghum Processing and Utilization
  • 6.1 Abrasive Decortication and Hammer Milling
  • 6.2 Roller Milling
  • 6.3 Grain Processing
  • 6.4 Primary Processing
  • 6.5 Secondary Processing
  • 6.6 Production of Processed Foods Through Machines
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok