Advanced Composite Materials for Aerospace Engineering

Processing, Properties and Applications
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 26. April 2016
  • |
  • 496 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100054-0 (ISBN)
 

Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals.

Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail.

The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning.

  • Contains contributions from leading experts in the field
  • Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry
  • Discusses both existing commercial composite materials and those currently under research or development
  • Englisch
  • London
Elsevier Science
  • 15,43 MB
978-0-08-100054-0 (9780081000540)
0081000545 (0081000545)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advanced Composite Materials for Aerospace Engineering
  • Related titles
  • Advanced Composite Materials for Aerospace Engineering
  • Copyright
  • Dedication
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Composites Science and Engineering
  • Editors' biographies
  • Preface
  • 1 - Advanced composites in aerospace engineering
  • 1.1 Introduction and current scenario
  • 1.2 Types of advanced composite materials
  • 1.2.1 Laminated composites
  • 1.2.2 Sandwich composites
  • 1.2.3 Braided composites
  • 1.2.4 Auxetic composites
  • 1.2.5 Ceramic and metal matrix composites
  • 1.2.6 Nanocomposites
  • 1.2.7 Multiscale composites
  • 1.2.8 Carbon-carbon composites
  • 1.2.9 Natural fibre composites
  • 1.2.10 Self-sensing composites
  • 1.2.11 Self-healing composites
  • 1.3 Conclusion
  • References
  • 2 - Advanced fibrous architectures for composites in aerospace engineering
  • 2.1 Introduction
  • 2.2 Types of fibrous architectures
  • 2.3 2D fibrous architectures
  • 2.3.1 Woven structures
  • 2.3.2 Knitted structures
  • 2.3.3 Directionally oriented structures
  • 2.3.4 Braided structures
  • 2.4 3D fibrous architectures
  • 2.4.1 3D woven structures
  • 2.4.2 3D knitted structures
  • 2.4.3 3D braided structures
  • 2.5 Hybrid fibrous architectures
  • 2.6 Production techniques
  • 2.6.1 Woven structures
  • 2.6.2 Knitted structures
  • 2.6.3 Directionally oriented structures
  • 2.6.4 Braided structures
  • 2.7 Properties of advanced fibrous architectures: advantages and disadvantages
  • 2.8 Applications
  • 2.8.1 Woven structures
  • 2.8.2 Knitted structures
  • 2.8.3 Directionally oriented structures
  • 2.8.4 Braided structures
  • 2.8.5 Future applications
  • 2.9 Summary and concluding remarks
  • Sources of further information
  • References
  • 3 - Metal and ceramic matrix composites in aerospace engineering
  • 3.1 Introduction
  • 3.2 Types of matrix
  • 3.2.1 Ceramic matrices
  • 3.2.2 Metallic matrices
  • 3.3 Types of fibre
  • 3.3.1 Particulate reinforcements
  • 3.3.2 Continuous fibres
  • 3.3.3 Short fibres
  • 3.3.3.1 Glass fibres
  • 3.3.3.2 Boron fibres
  • 3.3.3.3 Carbon fibres
  • 3.3.3.4 Oxide fibres
  • 3.3.3.5 Fibres of covalent ceramics
  • 3.3.3.6 Particles and whiskers
  • 3.4 Processing techniques
  • 3.4.1 Manufacturing of CMCs
  • 3.4.1.1 Interface between reinforcement-matrix and mechanical properties
  • 3.4.2 Manufacturing of MMCs
  • 3.4.2.1 Liquid state processing
  • 3.4.2.2 Solid-state processing
  • 3.4.2.3 Vapour deposition
  • 3.5 Joining and repair techniques
  • 3.5.1 Mechanical joining and integration of CMC
  • 3.5.2 Adhesive joining
  • 3.5.3 Hot-pressing diffusion bonding
  • 3.5.4 Brazing
  • 3.5.5 Phosphate bonding
  • 3.5.6 Other joining processes
  • 3.5.7 Repairing techniques
  • 3.6 Properties
  • 3.6.1 CMCs
  • 3.6.2 MMCs
  • 3.7 Modelling
  • 3.7.1 Elastic and plastic properties
  • 3.7.2 Strength, damage and fracture
  • 3.7.3 Fatigue
  • 3.7.4 Virtual testing
  • 3.7.5 Process simulation
  • 3.8 Applications and future
  • 3.9 Conclusions
  • References
  • 4 - Fibre-reinforced laminates in aerospace engineering
  • 4.1 Introduction
  • 4.1.1 The origin of advanced composite materials (ACMs)
  • 4.1.2 Classification of ACMs
  • 4.1.3 Background
  • 4.2 Technical requirements in the aerospace sector
  • 4.2.1 Static and fatigue
  • 4.2.2 Material and structural stability
  • 4.2.3 Strength
  • 4.3 Advanced laminated composites for aerospace engineering
  • 4.3.1 Common laminate definition
  • 4.3.2 Stacking-sequence notation
  • 4.3.3 Quasi-isotropic laminates
  • 4.3.4 Balanced laminates
  • 4.3.5 Hybrid laminate
  • 4.3.6 Background
  • 4.3.7 Manufacturing of laminated composites
  • 4.3.7.1 Low-pressure processes
  • 4.3.7.2 High-pressure processes
  • 4.3.8 Metal-based laminates (GLARE, ARALL and CARALL)
  • 4.3.8.1 Aramid-reinforced aluminium laminate
  • 4.3.8.2 Glass-reinforced aluminium laminate
  • 4.3.8.3 Carbon-reinforced aluminium laminate
  • 4.3.9 Glass fibre composites (glass fibre-phenolic and glass fibre polyether ether ketone (PEEK))
  • 4.3.9.1 Glass fibre-phenolic composites
  • 4.3.9.2 Glass fibre PEEK composites
  • 4.3.10 Potential applications of natural fibre composites
  • 4.4 Matrix systems
  • 4.4.1 Thermosetting resins
  • 4.4.2 Fossil fuel-based polymers
  • 4.4.3 Thermoplastic (biobased) polymers
  • 4.5 Fibre direction and stacking sequence design for FMLs
  • 4.5.1 The finite element model
  • 4.5.2 The single-layer equivalent model
  • 4.5.3 Fatigue modelling strategies
  • 4.5.4 Fatigue life models
  • 4.5.5 Residual stiffness model
  • 4.5.6 Mechanistic models
  • 4.6 Future perspective and applications
  • 4.7 Conclusions
  • References
  • 5 - Sandwiched composites in aerospace engineering
  • 5.1 Introduction
  • 5.2 Sandwiched composite structures
  • 5.2.1 Raw materials
  • 5.2.1.1 Facing skins
  • 5.2.1.2 Sandwich cores
  • Structural adhesives
  • 5.2.2 Production methods
  • 5.2.2.1 Liquid moulding technologies
  • 5.2.2.2 Bagging and autoclaving
  • 5.2.2.3 Compression moulding
  • 5.2.2.4 Wet lay-up
  • 5.2.2.5 Filament winding
  • 5.2.2.6 Adhesive bonding
  • 5.2.2.7 Continuous lamination
  • 5.2.3 Composite sandwich properties
  • 5.2.4 Major applications
  • 5.3 Design of sandwich structures
  • 5.3.1 Modes of failure under flexure
  • 5.3.1.1 Sandwich composite beams
  • 5.3.1.2 Sandwich plates
  • 5.3.2 Skin failure
  • 5.3.2.1 Sandwich beams
  • 5.3.2.2 Sandwich plates
  • 5.3.3 Core failure
  • 5.3.3.1 Sandwich beams
  • 5.3.3.2 Sandwich plates
  • 5.3.4 Skin and core interfacial design
  • 5.4 Quality control, maintenance, testing, inspection and repairing
  • 5.4.1 Nondestructing testing
  • 5.4.2 Repairing sandwich structures
  • 5.5 Conclusions
  • References
  • 6 - Braided composites in aerospace engineering
  • 6.1 Introduction
  • 6.2 Definition and concept
  • 6.3 Advantages
  • 6.4 Types of fibre and matrix
  • 6.5 Production methods
  • 6.6 Properties
  • 6.7 Modelling
  • 6.7.1 Unidirectional laminar material properties
  • 6.7.2 Ply mechanics and macromechanics
  • 6.7.3 Braided composite elastic properties
  • 6.7.4 Strength and failure
  • 6.7.5 Fatigue behaviour
  • 6.8 Joining techniques
  • 6.9 Applications
  • Sources of further information and advice
  • References
  • 7 - Auxetic composites in aerospace engineering
  • 7.1 Introduction
  • 7.2 Definition and concept
  • 7.3 Advantages and disadvantages
  • 7.4 Types of auxetic composites
  • 7.4.1 Laminated angle-ply auxetic composites
  • 7.4.2 Composites with auxetic inclusions
  • 7.4.3 Auxetic composites made from preforms based on auxetic textile structures
  • 7.4.3.1 What is a preform?
  • Planar auxetic assemblies
  • 7.4.3.2 3D auxetic assemblies
  • 7.4.4 Fibres and matrix systems for auxetic composites
  • 7.4.5 Manufacturing techniques of auxetic composites
  • 7.4.5.1 Vacuum bag moulding technique
  • 7.4.6 Factors to be considered during auxetic composite manufacturing
  • 7.5 Properties
  • 7.5.1 The myth of auxeticity and modulus
  • 7.5.2 Fracture toughness and energy absorption
  • 7.5.3 Static indentation and low-velocity impact resistance
  • 7.5.4 Synclastic deformation
  • 7.6 Modelling
  • 7.6.1 Angle-ply laminates
  • 7.6.2 Spherical auxetic inclusions model by Wei and Edwards (1998)
  • 7.6.3 Concentric composites model by Strek and Jopek (2012)
  • 7.6.4 Auxetic spherical and cubic inclusions model
  • 7.7 Applications
  • 7.7.1 General application
  • 7.7.2 Application of composites
  • 7.8 Conclusions
  • References
  • 8 - Polymer nanocomposite: an advanced material for aerospace applications
  • 8.1 Introduction
  • 8.2 Polymeric parts in aerospace engineering: present state of the art
  • 8.3 Polymer nanocomposite: the leading-edge material
  • 8.3.1 What is a nanocomposite?
  • 8.3.2 Synthesis routes of PNCs
  • 8.3.3 Modelling of nanocomposite
  • 8.3.3.1 Macroscopic modelling
  • 8.3.3.2 Microscopic modelling
  • 8.3.3.3 Multiscale modelling
  • 8.4 Properties of nanocomposites
  • 8.4.1 Weight reduction
  • 8.4.2 Strength and stiffness
  • 8.4.3 Thermal stability and fire retardancy
  • 8.4.4 Electronic properties
  • 8.4.5 Field emission and optical properties
  • 8.4.6 Age and durability performance
  • 8.4.7 Impact resistance and energy absorption
  • 8.4.8 Tribological and anticorrosion coatings
  • 8.5 Case studies
  • 8.5.1 Polyurethane-hybrid nanographite nanocomposite for microwave-absorbent applications
  • 8.5.2 CNF-incorporated three-phase carbon-epoxy composites with enhanced mechanical, electrical and thermal properties
  • 8.5.3 Multifunctional multilayered nanocomposite coatings and laminates for weather-resistant aerostats
  • 8.6 Some commercial applications
  • 8.7 Conclusion
  • References
  • 9 - Multiscale composites for aerospace engineering
  • 9.1 Introduction
  • 9.2 Definition and concept
  • 9.3 Types of nanomaterials
  • 9.4 Fabrication of multiscale composites
  • 9.4.1 Methods of nanomaterial incorporation within matrix
  • 9.4.2 Multiscale composites fabrication by incorporating nanomaterials on the fibre surface
  • 9.5 Fabrication of multiscale composites
  • 9.6 Mechanical performance of multiscale composites
  • 9.6.1 Why does nanomaterial addition lead to better mechanical properties of conventional composites?
  • 9.6.2 Improvement of matrix-dominated properties
  • 9.6.3 Conductivity of multiscale composites
  • 9.7 Electromagnetic shielding
  • 9.8 Strain and damage sensing with multiscale composites
  • 9.9 Dimensional stability of multiscale composites
  • 9.10 Applications of multiscale composites in aerospace engineering
  • 9.11 Summary and conclusions
  • References
  • 10 - Self-sensing structural composites in aerospace engineering
  • 10.1 Introduction to self-sensing
  • 10.2 Electrical-resistance-based self-sensing
  • 10.3 Electrical configurations for self-sensing
  • 10.4 Spatial distribution sensing
  • 10.5 Structural composites in aerospace engineering
  • 10.6 Sensing strain or stress
  • 10.6.1 Applications
  • 10.6.2 Concept
  • 10.6.3 Approach
  • 10.6.4 Piezoresistivity-based sensing
  • 10.6.5 Electrical contact placement
  • 10.6.6 Joint monitoring
  • 10.7 Sensing damage
  • 10.7.1 Applications
  • 10.7.2 Concept
  • 10.7.3 Approach
  • 10.7.4 Self-sensing characteristics of carbon fibre polymer matrix composites
  • 10.7.5 The interlaminar interface as a sensor
  • 10.8 Sensing temperature
  • 10.8.1 Applications
  • 10.8.2 Thermistors
  • 10.8.3 Thermocouples
  • 10.9 Sensing both strain/stress and mechanical damage
  • 10.10 Sensing both temperature and thermal damage
  • 10.11 Modelling of self-sensing
  • 10.12 Applications of self-sensing composites in aerospace engineering
  • 10.13 Conclusion
  • References
  • 11 - Self-healing composites for aerospace applications
  • 11.1 Introduction
  • 11.2 Self-healing concept
  • 11.2.1 Extrinsic healing
  • 11.2.2 Intrinsic healing
  • 11.3 Self-healing approaches
  • 11.3.1 Microcapsules
  • 11.3.2 Vascular materials
  • 11.3.3 Dissolved thermoplastics
  • 11.3.4 Reversible chemical reactions
  • 11.3.5 Reversible physical interactions
  • 11.3.6 Reversible supramolecular interactions
  • 11.4 Self-healing composite constituent materials
  • 11.4.1 Polymer matrix
  • 11.4.1.1 Glass-epoxy fibre-reinforced polymer composites
  • 11.4.1.2 Carbon-epoxy fibre-reinforced polymer composites (CFRPs)
  • 11.4.1.3 Other self-healing polymer composites
  • 11.4.2 Ceramic matrix
  • 11.4.3 Metal matrix
  • 11.5 Functionality recovery in self-healing composites
  • 11.5.1 Structural integrity recovery
  • 11.5.2 Mechanical properties recovery
  • 11.5.2.1 Fracture property
  • 11.5.2.2 Impact property
  • 11.5.2.3 Fatigue property
  • 11.5.3 Barrier and corrosion protection recovery
  • 11.6 Applications of self-healing composites
  • 11.6.1 Aerospace applications
  • 11.6.1.1 Engines
  • 11.6.1.2 Fuselage
  • 11.6.1.3 Aerostructures
  • 11.6.1.4 Coatings
  • 11.6.2 Other applications
  • 11.7 Summary
  • References
  • 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering
  • 12.1 Introduction
  • 12.2 Advantages of NFCs
  • 12.3 Types of natural plant fibre
  • 12.4 Types of matrices
  • 12.5 Green composites
  • 12.6 Limitations of natural fibres
  • 12.7 Techniques for improving performance
  • 12.8 Prediction of properties: influence of factors
  • 12.9 Applications of polymers and polymer composites
  • 12.10 Conclusion
  • References
  • 13 - Carbon-carbon composites in aerospace engineering
  • 13.1 Introduction
  • 13.2 Concept of CC composites
  • 13.3 Processing of CC materials
  • 13.4 Chemical vapour deposition
  • 13.4.1 The isothermal method
  • 13.4.2 The thermal gradient method
  • 13.4.3 The pressure gradient method
  • 13.5 CC composites from CNTs
  • 13.6 Structure of CC composites
  • 13.6.1 Pyrolysis of a thermoset matrix
  • 13.6.2 Pyrolysis of a thermoplastic matrix
  • 13.6.3 Microstructure of CVD-densified composites
  • 13.7 CC properties
  • 13.7.1 Mechanical properties
  • 13.7.2 Thermal properties
  • 13.7.2.1 Thermal conductivity
  • 13.7.2.2 Thermal expansion
  • 13.8 Frictional properties
  • 13.9 Electrical properties
  • 13.10 Biocompatibility
  • 13.11 Oxidation
  • 13.11.1 Oxidation protection of CC composites
  • 13.12 Applications
  • 13.13 CC joining
  • 13.14 Conclusions
  • Acknowledgements
  • References
  • 14 - Product design for advanced composite materials in aerospace engineering
  • 14.1 Introduction
  • 14.2 Design strategy
  • 14.3 Factors that influence product design
  • 14.4 Design methods
  • 14.4.1 Deterministic design
  • 14.4.2 Probabilistic design
  • 14.5 Design tools
  • 14.5.1 Composite configuration tools
  • 14.5.2 Basic laminate analysis
  • 14.5.3 Structural analysis
  • 14.5.4 Production design tools
  • 14.6 Case studies in product design
  • 14.6.1 Case study 1: an all-composite centre wing box in the Boeing 787 Dreamliner
  • 14.6.2 Case study 2: a composite sliding sleeve for thrust reverser in jet engines
  • 14.7 Example 1: an Airbus H160 all-composite helicopter
  • 14.8 Example 2: Scaled Composites' White Knight Two
  • 14.9 Example 3: CMCs for next-generation engines
  • 14.10 Conclusions
  • References
  • 15 - Quality control and testing methods for advanced composite materials in aerospace engineering
  • 15.1 Introduction
  • 15.2 Quality control
  • 15.2.1 Material quality control
  • 15.2.1.1 Constituent materials control
  • Resins quality control
  • Fibres quality control
  • Prepregs quality control
  • 15.2.1.2 Procured materials controls
  • 15.2.2 Process control
  • 15.2.2.1 Cure monitoring
  • 15.2.2.2 Post-cure verifications
  • 15.3 Destructive testing
  • 15.3.1 Destructive testing methods
  • 15.3.1.1 Microstructural examination
  • 15.3.1.2 Mechanical testing
  • 15.3.2 Examples of applications
  • 15.4 Nondestructive testing
  • 15.4.1 Conventional NDT methods
  • 15.4.1.1 Optical NDT
  • 15.4.1.2 Liquid penetrant-assisted NDT
  • 15.4.1.3 Ultrasonic NDT techniques
  • 15.4.2 Advanced NDT methods
  • 15.4.2.1 Infrared (IR) thermography
  • 15.4.2.2 Laser-based ultrasound techniques
  • 15.4.2.3 Laser shearography
  • 15.5 Airworthiness considerations
  • 15.5.1 Certification
  • 15.5.2 Design allowables
  • 15.6 Conclusion
  • References
  • 16 - Conclusions and future trends
  • 16.1 Summary
  • 16.2 Conclusion and future trends
  • Further reading
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,15 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok