Parametric Time-Frequency Domain Spatial Audio

 
 
Standards Information Network (Verlag)
  • erschienen am 4. Oktober 2017
  • |
  • 416 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-25258-0 (ISBN)
 
A comprehensive guide that addresses the theory and practice of spatial audio
This book provides readers with the principles and best practices in spatial audio signal processing. It describes how sound fields and their perceptual attributes are captured and analyzed within the time-frequency domain, how essential representation parameters are coded, and how such signals are efficiently reproduced for practical applications. The book is split into four parts starting with an overview of the fundamentals. It then goes on to explain the reproduction of spatial sound before offering an examination of signal-dependent spatial filtering. The book finishes with coverage of both current and future applications and the direction that spatial audio research is heading in.
Parametric Time-frequency Domain Spatial Audio focuses on applications in entertainment audio, including music, home cinema, and gaming--covering the capturing and reproduction of spatial sound as well as its generation, transduction, representation, transmission, and perception. This book will teach readers the tools needed for such processing, and provides an overview to existing research. It also shows recent up-to-date projects and commercial applications built on top of the systems.
* Provides an in-depth presentation of the principles, past developments, state-of-the-art methods, and future research directions of spatial audio technologies
* Includes contributions from leading researchers in the field
* Offers MATLAB codes with selected chapters
An advanced book aimed at readers who are capable of digesting mathematical expressions about digital signal processing and sound field analysis, Parametric Time-frequency Domain Spatial Audio is best suited for researchers in academia and in the audio industry.
1. Auflage
  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 2,88 MB
978-1-119-25258-0 (9781119252580)
111925258X (111925258X)
weitere Ausgaben werden ermittelt
VILLE PULKKI, PHD, is an Associate Professor leading the Communication Acoustics Research Group in the Department of Signal Processing and Acoustics, Aalto University, Finland. He has received distinguished medal awards from Society of Motion Picture and Television Engineers and from Audio Engineering Society.
SYMEON DELIKARIS-MANIAS is a postdoc researcher affiliated with the Communication Acoustics Research Group in the Department of Signal Processing and Acoustics at Aalto University, Finland.
ARCHONTIS POLITIS, PHD, is a postdoc researcher affiliated with the Communication Acoustics Research Group in the Department of Signal Processing and Acoustics at Aalto University and Tampere University of Technology in Finland.
  • "Parametric Timeâ??Frequency Domain Spatial Audio"
  • "Contents"
  • "List of Contributors"
  • "Preface"
  • "About the Companion Website"
  • "Part I Analysis and Synthesis of Spatial Sound"
  • "1 Timeâ??Frequency Processing: Methods and Tools"
  • "1.1 Introduction"
  • "1.2 Timeâ??Frequency Processing"
  • "1.2.1 Basic Structure"
  • "1.2.2 Uniform Filter Banks"
  • "1.2.3 Prototype Filters and Modulation"
  • "1.2.4 A Robust Complex-Modulated Filter Bank, and Comparison with STFT"
  • "1.2.5 Overlap-Add and Windowing"
  • "1.2.6 Example Implementation of a Robust Filter Bank in Matlab"
  • "1.2.7 Cascaded Filters"
  • "1.3 Processing of Spatial Audio"
  • "1.3.1 Stochastic Estimates"
  • "1.3.2 Decorrelation"
  • "1.3.3 Optimal and Generalized Solution for Spatial Sound Processing Using Covariance Matrices"
  • "References"
  • "2 Spatial Decomposition by Spherical Array Processing"
  • "2.1 Introduction"
  • "2.2 Sound Field Measurement by a Spherical Array"
  • "2.3 Array Processing and Plane-Wave Decomposition"
  • "2.4 Sensitivity to Noise and Standard Regularization Methods"
  • "2.5 Optimal Noise-Robust Design"
  • "2.5.1 PWD Estimation Error Measure"
  • "2.5.2 PWD Error Minimization"
  • "2.5.3 R-PWD Simulation Study"
  • "2.6 Spatial Aliasing and High Frequency Performance Limit"
  • "2.7 High Frequency Bandwidth Extension by Aliasing Cancellation"
  • "2.7.1 Spatial Aliasing Error"
  • "2.7.2 AC-PWD Simulation Study"
  • "2.8 High Performance Broadband PWD Example"
  • "2.8.1 Broadband Measurement Model"
  • "2.8.2 Minimizing Broadband PWD Error"
  • "2.8.3 BB-PWD Simulation Study"
  • "2.9 Summary"
  • "2.10 Acknowledgment"
  • "References"
  • "3 Sound Field Analysis Using Sparse Recovery"
  • "3.1 Introduction"
  • "3.2 The Plane-Wave Decomposition Problem"
  • "3.2.1 Sparse Plane-Wave Decomposition"
  • "3.2.2 The Iteratively Reweighted Least-Squares Algorithm"
  • "3.3 Bayesian Approach to Plane-Wave Decomposition"
  • "3.4 Calculating the IRLS Noise-Power Regularization Parameter"
  • "3.4.1 Estimation of the Relative Noise Power"
  • "3.5 Numerical Simulations"
  • "3.6 Experiment: Echoic Sound Scene Analysis"
  • "3.7 Conclusions"
  • "Appendix"
  • "References"
  • "Part II Reproduction of Spatial Sound"
  • "4 Overview of Timeâ??Frequency Domain Parametric Spatial Audio Techniques"
  • "4.1 Introduction"
  • "4.2 Parametric Processing Overview"
  • "4.2.1 Analysis Principles"
  • "4.2.2 Synthesis Principles"
  • "4.2.3 Spatial Audio Coding and Up-Mixing"
  • "4.2.4 Spatial Sound Recording and Reproduction"
  • "4.2.5 Auralization of Measured Room Acoustics and Spatial Rendering of Room Impulse Responses"
  • "References"
  • "5 First-Order Directional Audio Coding (DirAC)"
  • "5.1 Representing Spatial Sound with First-Order B-Format Signals"
  • "5.2 Some Notes on the Evolution of the Technique"
  • "5.3 DirAC with Ideal B-Format Signals"
  • "5.4 Analysis of Directional Parameters with Real Microphone Setups"
  • "5.4.1 DOA Analysis with Open 2D Microphone Arrays"
  • "5.4.2 DOA Analysis with 2D Arrays with a Rigid Baffle"
  • "5.4.3 DOA Analysis in Underdetermined Cases"
  • "5.4.4 DOA Analysis: Further Methods"
  • "5.4.5 Effect of Spatial Aliasing and Microphone Noise on the Analysis of Diffuseness"
  • "5.5 First-Order DirAC with Monophonic Audio Transmission"
  • "5.6 First-Order DirAC with Multichannel Audio Transmission"
  • "5.6.1 Stream-Based Virtual Microphone Rendering"
  • "5.6.2 Evaluation of Virtual Microphone DirAC"
  • "5.6.3 Discussion of Virtual Microphone DirAC"
  • "5.6.4 Optimized DirAC Synthesis"
  • "5.6.5 DirAC-Based Reproduction of Spaced-Array Recordings"
  • "5.7 DirAC Synthesis for Headphones and for Hearing Aids"
  • "5.7.1 Reproduction of B-Format Signals"
  • "5.7.2 DirAC in Hearing Aids"
  • "5.8 Optimizing the Timeâ??Frequency Resolution of DirAC for Critical Signals"
  • "5.9 Example Implementation"
  • "5.9.1 Executing DirAC and Plotting Parameter History"
  • "5.9.2 DirAC Initialization"
  • "5.9.3 DirAC Runtime"
  • "5.9.4 Simplistic Binaural Synthesis of Loudspeaker Listening"
  • "5.10 Summary"
  • "References"
  • "6 Higher-Order Directional Audio Coding"
  • "6.1 Introduction"
  • "6.2 Sound Field Model"
  • "6.3 Energetic Analysis and Estimation of Parameters"
  • "6.3.1 Analysis of Intensity and Diffuseness in the Spherical Harmonic Domain"
  • "6.3.2 Higher-Order Energetic Analysis"
  • "6.3.3 Sector Profiles"
  • "6.4 Synthesis of Target Setup Signals"
  • "6.4.1 Loudspeaker Rendering"
  • "6.4.2 Binaural Rendering"
  • "6.5 Subjective Evaluation"
  • "6.6 Conclusions"
  • "References"
  • "7 Multi-Channel Sound Acquisition Using a Multi-Wave Sound Field Model"
  • "7.1 Introduction"
  • "7.2 Parametric Sound Acquisition and Processing"
  • "7.2.1 Problem Formulation"
  • "7.2.2 Principal Estimation of the Target Signal"
  • "7.3 Multi-Wave Sound Field and Signal Model"
  • "7.3.1 Direct Sound Model"
  • "7.3.2 Diffuse Sound Model"
  • "7.3.3 Noise Model"
  • "7.4 Direct and Diffuse Signal Estimation"
  • "7.4.1 Estimation of the Direct Signal "
  • "7.4.2 Estimation of the Diffuse Signal "
  • "7.5 Parameter Estimation"
  • "7.5.1 Estimation of the Number of Sources"
  • "7.5.2 Direction of Arrival Estimation"
  • "7.5.3 Microphone Input PSD Matrix"
  • "7.5.4 Noise PSD Estimation"
  • "7.5.5 Diffuse Sound PSD Estimation"
  • "7.5.6 Signal PSD Estimation in Multi-Wave Scenarios"
  • "7.6 Application to Spatial Sound Reproduction"
  • "7.6.1 State of the Art"
  • "7.6.2 Spatial Sound Reproduction Based on Informed Spatial Filtering"
  • "7.7 Summary"
  • "References"
  • "8 Adaptive Mixing of Excessively Directive and Robust Beamformers for Reproduction of Spatial Sound"
  • "8.1 Introduction"
  • "8.2 Notation and Signal Model"
  • "8.3 Overview of the Method"
  • "8.4 Loudspeaker-Based Spatial Sound Reproduction"
  • "8.4.1 Estimation of the Target Covariance Matrix "
  • "8.4.2 Estimation of the Synthesis Beamforming Signals "
  • "8.4.3 Processing the Synthesis Signals to Obtain the Target Covariance Matrix "
  • "8.4.4 Spatial Energy Distribution"
  • "8.4.5 Listening Tests"
  • "8.5 Binaural-Based Spatial Sound Reproduction"
  • "8.5.1 Estimation of the Analysis and Synthesis Beamforming Weight Matrices"
  • "8.5.2 Diffuse-Field Equalization of HRTFs"
  • "8.5.3 Adaptive Mixing and Decorrelation"
  • "8.5.4 Subjective Evaluation"
  • "8.6 Conclusions"
  • "References"
  • "9 Source Separation and Reconstruction of Spatial Audio Using Spectrogram Factorization"
  • "9.1 Introduction"
  • "9.2 Spectrogram Factorization"
  • "9.2.1 Mixtures of Sounds"
  • "9.2.2 Magnitude Spectrogram Models"
  • "9.2.3 Complex-Valued Spectrogram Models"
  • "9.2.4 Source Separation by Timeâ??Frequency Filtering"
  • "9.3 Array Signal Processing and Spectrogram Factorization"
  • "9.3.1 Spaced Microphone Arrays"
  • "9.3.2 Model for Spatial Covariance Based on Direction of Arrival"
  • "9.3.3 Complex-Valued NMF with the Spatial Covariance Model"
  • "9.4 Applications of Spectrogram Factorization in Spatial Audio"
  • "9.4.1 Parameterization of Surround Sound: Upmixing by Timeâ??Frequency Filtering"
  • "9.4.2 Source Separation Using a Compact Microphone Array"
  • "9.4.3 Reconstruction of Binaural Sound Through Source Separation"
  • "9.5 Discussion"
  • "9.6 Matlab Example"
  • "References"
  • "Part III Signal-Dependent Spatial Filtering"
  • "10 Timeâ??Frequency Domain Spatial Audio Enhancement"
  • "10.1 Introduction"
  • "10.2 Signal-Independent Enhancement"
  • "10.3 Signal-Dependent Enhancement"
  • "10.3.1 Adaptive Beamformers"
  • "10.3.2 Post-Filters"
  • "10.3.3 Post-Filter Types"
  • "10.3.4 Estimating Post-Filters with Machine Learning"
  • "10.3.5 Post-Filter Design Based on Spatial Parameters"
  • "References"
  • "11 Cross-Spectrum-Based Post-Filter Utilizing Noisy and Robust Beamformers"
  • "11.1 Introduction"
  • "11.2 Notation and Signal Model"
  • "11.2.1 Virtual Microphone Design Utilizing Pressure Microphones"
  • "11.3 Estimation of the Cross-Spectrum-Based Post-Filter"
  • "11.3.1 Post-Filter Estimation Utilizing Two Static Beamformers"
  • "11.3.2 Post-Filter Estimation Utilizing a Static and an Adaptive Beamformer"
  • "11.3.3 Smoothing Techniques"
  • "11.4 Implementation Examples"
  • "11.4.1 Ideal Conditions"
  • "11.4.2 Prototype Microphone Arrays"
  • "11.5 Conclusions and Further Remarks"
  • "11.6 Source Code"
  • "References"
  • "12 Microphone-Array-Based Speech Enhancement Using Neural Networks"
  • "12.1 Introduction"
  • "12.2 Timeâ??Frequency Masks for Speech Enhancement Using Supervised Learning"
  • "12.2.1 Beamforming with Post-Filtering"
  • "12.2.2 Overview of Mask Prediction"
  • "12.2.3 Features for Mask Learning"
  • "12.2.4 Target Mask Design"
  • "12.3 Artificial Neural Networks"
  • "12.3.1 Learning the Weights"
  • "12.3.2 Generalization"
  • "12.3.3 Deep Neural Networks"
  • "12.4 Mask Learning: A Simulated Example"
  • "12.4.1 Feature Extraction"
  • "12.4.2 Target Mask Design"
  • "12.4.3 Neural Network Training"
  • "12.4.4 Results"
  • "12.5 Mask Learning: A Real-World Example"
  • "12.5.1 Brief Description of the Third CHiME Challenge Data"
  • "12.5.2 Data Processing and Beamforming"
  • "12.5.3 Description of Network Structure, Features, and Targets"
  • "12.5.4 Mask Prediction Results and Discussion"
  • "12.5.5 Speech Enhancement Results"
  • "12.6 Conclusions"
  • "12.7 Source Code"
  • "12.7.1 Matlab Code for Neural-Network-Based Sawtooth Denoising Example"
  • "12.7.2 Matlab Code for Phase Feature Extraction"
  • "References"
  • "Part IV Applications"
  • "13 Upmixing and Beamforming in Professional Audio"
  • "13.1 Introduction"
  • "13.2 Stereo-to-Multichannel Upmix Processor"
  • "13.2.1 Product Description"
  • "13.2.2 Considerations for Professional Audio and Broadcast"
  • "13.2.3 Signal Processing"
  • "13.3 Digitally Enhanced Shotgun Microphone"
  • "13.3.1 Product Description"
  • "13.3.2 Concept"
  • "13.3.3 Signal Processing"
  • "13.3.4 Evaluations and Measurements"
  • "13.4 Surround Microphone System Based on Two Microphone Elements"
  • "13.4.1 Product Description"
  • "13.4.2 Concept"
  • "13.5 Summary"
  • "References"
  • "14 Spatial Sound Scene Synthesis and Manipulation for Virtual Reality and Audio Effects"
  • "14.1 Introduction"
  • "14.2 Parametric Sound Scene Synthesis for Virtual Reality"
  • "14.2.1 Overall Structure"
  • "14.2.2 Synthesis of Virtual Sources"
  • "14.2.3 Synthesis of Room Reverberation"
  • "14.2.4 Augmentation of Virtual Reality with Real Spatial Recordings"
  • "14.2.5 Higher-Order Processing"
  • "14.2.6 Loudspeaker-Signal Bus"
  • "14.3 Spatial Manipulation of Sound Scenes"
  • "14.3.1 Parametric Directional Transformations"
  • "14.3.2 Sweet-Spot Translation and Zooming"
  • "14.3.3 Spatial Filtering"
  • "14.3.4 Spatial Modulation"
  • "14.3.5 Diffuse Field Level Control"
  • "14.3.6 Ambience Extraction"
  • "14.3.7 Spatialization of Monophonic Signals"
  • "14.4 Summary"
  • "References"
  • "15 Parametric Spatial Audio Techniques in Teleconferencing and Remote Presence"
  • "15.1 Introduction and Motivation"
  • "15.2 Background"
  • "15.3 Immersive Audio Communication System (ImmACS)"
  • "15.3.1 Encoder"
  • "15.3.2 Decoder"
  • "15.4 Capture and Reproduction of Crowded Acoustic Environments"
  • "15.4.1 Sound Source Positioning Based on VBAP"
  • "15.4.2 Non-Parametric Approach"
  • "15.4.3 Parametric Approach"
  • "15.4.4 Example Application"
  • "15.5 Conclusions"
  • "References"
  • "Index"

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

108,00 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok