Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements

 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. Juli 2016
  • |
  • 408 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-323-41739-6 (ISBN)
 

Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements introduces the innovative applications of polymeric materials based on nanocellulose, and covers extraction methods, functionalization approaches, and assembly methods to enable these applications. The book presents the state-of-the-art of this novel nano-filler and how it enables new applications in many different sectors, beyond existing products.

With a focus on application of nano-cellulose based polymers with multifunctional activity, the book explains the methodology of nano-cellulose extraction and production and shows the potential performance benefits of these particular nanostructured polymers, for applications across different sectors, including food active packaging, energy-photovoltaics, biomedical, and filtration. The book describes how the different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level.

The book studies the interactions between the main nano-filler with other active systems and how this interaction enables multi-functionality in the produced materials. The book is an indispensable resource for the growing number of scientists and engineers interested in the preparation and novel applications of nano-cellulose, and for industrial scientists active in formulation and fabrication of polymer products based on renewable resources.


  • Provides insight into nanostructure formation science, and processing of polymeric materials and their characterization
  • Offers a strong analysis of real industry needs for designing the materials
  • Provides a well-balanced structure, including a light introduction of basic knowledge on extraction methods, functionalization approaches, and assembling focused to applications
  • Describes how different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level


Researcher and Lecturer at the University of Perugia. She is author of 74 scientific publications (h=19) in the field of polymeric composites and nanocomposites.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 10,82 MB
978-0-323-41739-6 (9780323417396)
0323417396 (0323417396)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • 1 Extraction of Lignocellulosic Materials From Waste Products
  • 1.1 Introduction
  • 1.2 Cellulosic-Based Material Structure and Properties
  • 1.2.1 Methods for Cellulose-Based Material Extraction From Agro-waste Products
  • 1.3 Hemicellulose Structure, Properties, and Applications
  • 1.3.1 Hemicellulose Extraction From Agro-waste Products
  • 1.4 Lignin Structure, Properties, and Applications
  • 1.4.1 Methods for Lignin Extraction From Agro-waste Products
  • 1.5 Conclusions
  • References
  • 2 Production of Bacterial Nanocellulose From Non-Conventional Fermentation Media
  • 2.1 Introduction
  • 2.2 Microbial Fermentations
  • 2.3 Bacterial Nanocellulose
  • 2.4 Bacterial Nanocellulose Production: Why Look for Alternative Raw Materials?
  • 2.5 Conclusions
  • References
  • 3 Grafting of Cellulose Nanocrystals
  • 3.1 Introduction
  • 3.2 Grafting of Cellulose Nanocrystals
  • 3.2.1 Substitution of Surface -OH Groups by Small Molecules
  • 3.2.1.1 Sulfonation
  • 3.2.1.2 Acetylation/Esterification
  • 3.2.1.3 Silylation
  • 3.2.1.4 TEMPO Oxidation
  • 3.2.1.5 Cationization
  • 3.2.1.6 Carbamation
  • 3.2.2 Grafting Approaches
  • 3.2.2.1 Grafting To
  • 3.2.2.2 Grafting From
  • 3.2.2.2.1 Conventional Free Radical Polymerization
  • Initiation With Potassium Persulfate (KPS)
  • Initiation with Fenton's Reagent (Fe2+-H2O2 System)
  • Initiation With Ceric Ammonium Nitrate (CAN)
  • 3.2.2.2.2 Ionic Polymerization
  • 3.2.2.2.3 Ring-Opening Polymerization (ROP)
  • 3.2.2.2.4 Reversible-Deactivation Radical Polymerization Methods
  • Nitroxide-Mediated Polymerization (NMP)
  • Atom Transfer Radical Polymerization
  • Reversible Addition-Fragmentation Chain Transfer Polymerization
  • 3.2.2.3 Grafting Through
  • 3.2.2.4 Bioconjugation
  • 3.3 Polymer Nanocomposites Containing Grafted Cellulose Nanocrystals
  • 3.4 Conclusions, Perspectives, and Emerging Ideas
  • References
  • 4 Tensile Properties of Wood Cellulose Nanopaper and Nanocomposite Films
  • 4.1 Introduction
  • 4.2 Stress-Strain Behavior of Cellulose Nanopaper Films
  • 4.2.1 Effect of Moisture, pH, and Counter Ions
  • 4.2.2 Oriented Nanopaper Films
  • 4.3 Polymer Matrix Nanocomposites
  • 4.3.1 Core-Shell Cellulose Nanofiber Nanocomposites Based on Water-Soluble Polymers
  • 4.3.2 Thermoset Nanocomposites Based on Cellulose Nanofibers
  • 4.3.3 Thermoset Nanocomposites Based on Wood Pulp Fibers
  • 4.4 Concluding Remarks
  • References
  • 5 Nanocellulose-Based Polymeric Blends for Coating Applications
  • 5.1 Introduction to Coatings
  • 5.1.1 Generalities and Applications
  • 5.1.2 Methods of Deposition
  • 5.1.3 Posttreatments
  • 5.2 Generalities on Acrylics and Cellulose Nanocrystals
  • 5.3 Acrylic-Based Coatings and Nanocomposites
  • 5.3.1 Selection and Characterization of the Matrix
  • 5.3.1.1 Chemical Compositions
  • 5.3.1.2 Thermal Properties
  • 5.3.2 Incorporation of Cellulose Nanocrystals in Thick Films
  • 5.3.2.1 Processing and Cross-Linking
  • 5.3.2.2 Structural Characterization
  • 5.3.2.3 Morphological Properties
  • 5.3.2.4 Thermal and Mechanical Properties
  • 5.3.2.5 Optical Properties
  • 5.3.3 Incorporation of Cellulose Nanocrystals in Ultrathin Films
  • 5.3.3.1 Chemical Characterizations
  • 5.3.3.2 Physicochemical Properties
  • 5.3.3.3 Cellulose Nanocrystal Coverage Optimization
  • 5.3.3.4 Cellulose Nanocrystal Organization Optimization
  • 5.3.3.5 Effect of Postultraviolet Curing
  • 5.3.4 Stratification of Ultrathin Films
  • 5.4 Conclusions
  • Acknowledgments
  • References
  • 6 Multifunctional Applications of Nanocellulose-Based Nanocomposites
  • 6.1 Introduction
  • 6.2 Cellulose Nanofibrils, Nanocrystals, and Bacterial Cellulose
  • 6.3 Nanocellulose-Based Nanocomposites
  • 6.4 Applications of Nanocellulose-Based Composites
  • 6.4.1 Nanocellulose as Reinforcement in Polymer Composites
  • 6.4.2 Energy and Electronic Applications
  • 6.4.3 Environmental Science and Engineering Applications
  • 6.4.4 Medical Applications
  • 6.5 Conclusions
  • References
  • 7 Nanocellulose-Based Polymeric Blends for Food Packaging Applications
  • 7.1 Introduction
  • 7.2 Nanocellulose Structure and Extraction Procedures
  • 7.2.1 Cellulose Nanocrystal Extraction by Acid Hydrolysis
  • 7.2.2 Nanofibrillated Cellulose Extraction
  • 7.2.3 Bacterial Cellulose Obtainment
  • 7.3 Nanocellulose Modifications to Improve Its Compatibility With Polymer Matrices
  • 7.3.1 Physical Modification: Use of Surfactants
  • 7.3.2 Chemical Modification: Grafting
  • 7.4 Processing Aspects of Nanocellulose-Based Polymer Blends
  • 7.5 Properties of Nanocellulose-Based Nanocomposite Blends and Their Merits for Food Packaging
  • 7.5.1 Thermal Stability and Crystallization Behavior
  • 7.5.1.1 Thermal Properties of Nanocellulose and Its Nanocomposites
  • 7.5.1.2 Crystallinity of Nanocellulose and Its Nanocomposites
  • 7.5.2 Mechanical Properties
  • 7.5.3 Optical Properties
  • 7.5.3.1 Visible and Ultraviolet Range
  • 7.5.4 Barrier Properties and Wettability
  • 7.5.4.1 Surface Wettability
  • 7.5.4.2 Gas and Water Vapor Properties
  • 7.6 Release Aspects from Nanocellulose-Based Polymer Blends
  • 7.6.1 Nanocellulose-Based Active Packaging Systems
  • 7.7 Nanocellulose-Based Polymer Nanocomposite Blend Biodegradation Behavior
  • 7.8 Conclusions
  • Acknowledgment
  • References
  • 8 Nanocelluloses as Innovative Polymers for Membrane Applications
  • 8.1 Introduction
  • 8.2 Comparison of Cellulose Nancocrystals and Cellulose Nanofibers
  • 8.3 Nanocellulose-Based Membranes for Fuel Cell Applications
  • 8.4 Nanocellulose-Based Membranes for Wound Healing Applications
  • 8.5 Nanocellulose-Based Membranes for Gas Barrier Applications
  • 8.5.1 Cellulose Nanofiber-Based Membranes for Gas Barrier Applications
  • 8.5.2 Cellulose Nanocrystal-Based Membrane for Gas Barrier Applications
  • 8.6 Nanocellulose-Based Membranes for Water Purification
  • 8.6.1 Cellulose Nanofiber-Based Microfiltration Membrane for Water Purification
  • 8.6.2 Cellulose Nanocrystal-Based Microfiltration Membranes for Water Purification
  • 8.7 Conclusions
  • References
  • 9 Smart Nanocellulose Composites With Shape-Memory Behavior
  • 9.1 General Concept on Shape-Memory Polymers
  • 9.2 General Concept on Nanocellulose
  • 9.3 Mechanisms of Thermally Activated Shape-Memory Polymers
  • 9.4 Biodegradable Shape-Memory Polymers
  • 9.5 Shape-Memory Polymer Composites
  • 9.6 Cellulose Nanocrystals as Potential Filler for Shape-Memory Polymers
  • 9.7 Conclusions
  • Acknowledgments
  • References
  • 10 Computational Modeling of Polylactide and Its Cellulose-Reinforced Nanocomposites
  • 10.1 Introduction
  • 10.2 Simulation of Cellulose
  • 10.3 Simulation of Polylactide and Polylactide-Based Composites
  • 10.4 Generation of the Initial Configuration and Equilibration of Cellulose-Reinforced Polylactide Nanocomposites
  • 10.5 Simulation of Structural, Thermal, and Mechanical Properties of Nanocomposites by Atomistic Molecular Dynamics
  • 10.6 Development of the Method for Simulation of Nanocellulose-Modified With Polylactide Chains using Classical and Quantum...
  • 10.7 Conclusions
  • Acknowledgment
  • References
  • 11 Nanocellulose Alignment and Electrical Properties Improvement
  • 11.1 General Introduction
  • 11.2 Cellulose: Chemical and Physical Proprieties
  • 11.3 Preparation of Nanocelluloses
  • 11.3.1 Preparation of Cellulose Nanofibers
  • 11.3.2 Preparation of Cellulose Nanocrystals
  • 11.4 Microstructure of Nanocellulose
  • 11.5 Alignment Techniques
  • 11.5.1 Self-Assembly
  • 11.5.2 Electrospinning
  • 11.5.3 Stretching
  • 11.5.4 Magnetic Field
  • 11.5.5 Electric Field
  • 11.6 Orientation of Nanocellulose and Electrical Properties
  • 11.6.1 Nanocellulose Description
  • 11.7 Electric Field Manipulation of Nanofiber Celluloses
  • 11.8 Conclusion
  • Acknowledgment
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

145,18 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok