Metal Oxide-Based Thin Film Structures

Formation, Characterization and Application of Interface-Based Phenomena
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 7. September 2017
  • |
  • 560 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-101752-4 (ISBN)
 

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces.

Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films.

Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation.

This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials.

  • Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field
  • Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation
  • Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike
  • Englisch
  • Saint Louis
  • |
  • USA
  • 72,44 MB
978-0-08-101752-4 (9780081017524)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Metal Oxide-Based Thin Film Structures: Formation, Characterization, and Application of Interface-Based Phenomena
  • Copyright
  • Contents
  • Contributors
  • Editors' biographies
  • Series editor's biography
  • Preface to the series
  • Introduction
  • Section A: Interface formation: Theoretical aspect in epitaxial growth mechanisms, structural features and defects formation
  • Chapter 1: Epitaxy of 5d transition metal oxide thin films and heterostructures
  • 1.1. Introduction
  • 1.2. Challenges and opportunities in thin film synthesis
  • 1.3. Single-phase films
  • 1.3.1. Perovskite
  • 1.3.2. Ruddlesden-popper
  • 1.3.3. Honeycomb
  • 1.3.4. Pyrochlore
  • 1.4. 5d heterostructures and superlattices
  • 1.4.1. Iridate-titanate
  • 1.4.2. Iridate-manganite
  • 1.4.3. Iridate-ruthenate
  • 1.5. Conclusions and future direction
  • References
  • Chapter 2: Oxide superlattices by PLD: A practical guide
  • 2.1. Introduction
  • 2.2. Growth templates
  • 2.3. Growth of superlattices (diagnostics)
  • examples
  • 2.3.1. Example: Fabrication of PbTiO3-SrTiO3 superlattices grown by PLD
  • 2.3.2. Example: Fabrication of (La,Sr)MnO3-(Ba, Sr)TiO3 superlattices grown by PLD
  • 2.3.3. Example: Fabrication of (Sr,Ca)CuO2-BaCuO2 superlattices grown by PLD [19]
  • 2.3.3.1. Estimation deposition rate of constituents
  • 2.3.3.2. ABO2 superlattices
  • 2.4. Conclusions
  • References
  • Chapter 3: Oxide molecular beam epitaxy of complex oxide heterointerfaces
  • 3.1. Introduction
  • 3.2. Oxide MBE system
  • 3.3. MBE synthesis schemes
  • 3.3.1. Co-deposition method
  • 3.3.2. Atomic layer-by-layer synthesis
  • 3.3.3. Combinatorial synthesis
  • 3.4. MBE growth control of oxide heterostructures
  • 3.5. Cases of heterointerface study
  • 3.5.1. Delta-doping heterostructures [37-39]
  • 3.5.2. Overdoped-underdoped bilayers [64-66]
  • 3.5.3. LSAO-LCO bilayers and superlattices
  • 3.5.4. Comparative study of LNO-LAO heterostuctures grown by PLD and MBE [48,74]
  • 3.6. Conclusions
  • 3.7. Final remarks
  • References
  • Further reading
  • Chapter 4: Electrochemical ionic interfaces
  • 4.1. Introduction
  • 4.2. Defects and transport in ionic conductors
  • 4.3. Interfacial transport
  • 4.3.1. Space charge
  • 4.3.2. Strain
  • 4.3.2.1. Theoretical considerations
  • 4.3.2.2. Lattice strain
  • 4.3.2.3. Interfacial strain
  • 4.3.3. Dislocations
  • 4.3.4. Segregation
  • 4.3.5. Chemical expansion
  • 4.3.6. Electronic transfer
  • 4.4. Outlook
  • References
  • Section B: Experimental: Structural and compositional characterization techniques of metal oxides interfaces
  • Chapter 5: In situ stress measurements of metal oxide thin films
  • 5.1. Materials engineering in heteroepitaxial thin films
  • 5.2. Strain relaxation in epitaxial films: An overview of established principles and models
  • 5.3. In situ strain or stress observation techniques
  • 5.3.1. Diffraction-based techniques
  • 5.3.1.1. X-ray diffraction
  • 5.3.1.2. Reflection high-energy electron diffraction
  • 5.3.2. Curvature-based techniques
  • 5.3.2.1. Cantilever technique
  • 5.3.2.2. Multi-beam optical stress sensor
  • 5.4. Application of in situ strain/stress monitoring techniques
  • 5.4.1. X-ray diffraction
  • 5.4.2. Reflection-high energy electron diffraction
  • 5.4.3. Cantilever technique
  • 5.4.4. Multi-beam optical stress sensor
  • 5.5. Summary and outlook
  • References
  • Chapter 6: Plume characterization in pulsed laser deposition of metal oxide thin films
  • 6.1. Introduction
  • 6.2. Experimental diagnostic techniques of the laser ablation plume
  • 6.3. Plume dynamics of metal oxides in a background gas
  • 6.4. Deposition rate of metal oxides in a background gas
  • 6.5. Ion probe investigations of metal oxides in a background gas
  • 6.6. Influence of the background gas on metal oxide thin films stoichiometry
  • 6.7. Summary
  • References
  • Further reading
  • Chapter 7: Photoemission of buried metal oxide interfaces
  • 7.1. Introduction
  • 7.2. Basics of photoemission spectroscopy
  • 7.3. Photoemission of core levels
  • 7.3.1. Depth profiling
  • 7.3.2. Band bending and offset
  • 7.4. Photoemission of valence band
  • 7.4.1. Momentum-resolved mapping of valence states
  • 7.4.2. Tracing oxygen vacancies
  • 7.5. Conclusions and outlook
  • References
  • Further reading
  • Chapter 8: Functional material properties of oxide thin films probed by atomic force microscopy on the nanoscale
  • 8.1. Introduction to dynamic contact mode atomic force microscopy
  • 8.2. Electrostatic forces in contact mode
  • 8.3. Piezoelectric coefficients of ferroelectric materials
  • 8.4. Dielectric tunability
  • 8.5. Ionic motion in Li-ion conducting materials
  • 8.6. Outlook
  • References
  • Further reading
  • Chapter 9: Controlled atmosphere high-temperature scanning probe microscopy (CAHT-SPM)
  • 9.1. Introduction to high-temperature SPM
  • 9.1.1. Challenges
  • 9.2. Importance of in situ and in operando local probing measurements
  • 9.3. The CAHT-SPMs
  • 9.3.1. CAHT-I
  • 9.3.2. CAHT-II
  • 9.4. In situ surface reduction of NiO by hydrogen between 312C and 523C
  • 9.5. Local electrochemical measurements at 650C to 850°C
  • 9.6. Conductance mapping of LSM microelectrodes and correlation with complementary techniques
  • 9.7. Strong cathodic polarization of PtIr-YSZ microcontacts at 650°C
  • 9.8. High-temperature Kelvin probe force microscopy at 300-600°C
  • 9.9. Outlook
  • References
  • Chapter 10: Scanning SQUID measurements of oxide interfaces
  • 10.1. Introduction to scanning superconducting quantum interference device (SQUID)
  • 10.2. Introduction to scanning SQUID measurements of oxides
  • 10.2.1. Coexistence of ferromagnetism and superconductivity at the LAO/STO interface
  • 10.3. Superconductivity
  • 10.3.1. Gate-tuned superfluid density at the superconducting LAO/STO interface
  • 10.4. Magnetism
  • 10.4.1. Critical thickness for ferromagnetism in LAO/STO interface
  • 10.4.2. Manipulation by stress
  • 10.5. LaMnO3/SrTiO3
  • 10.5.1. Ferromagnetism and superparamagnetism in LMO/STO heterostructures
  • 10.6. Current flow
  • 10.6.1. Comparing global measurements with SQUID imaging
  • 10.6.2. Modulations of the superconducting critical temperature
  • References
  • Further reading
  • Section C: Modeling and properties at the metal oxide interfaces
  • Chapter 11: First-principle study of metal oxide thin films: Electronic and magnetic properties of confined d electrons
  • 11.1. Transition metal oxides: d electron
  • 11.2. Perovskite TM oxides: Symmetry and correlation
  • 11.3. DFT and simplified TB model for bulk SrVO3
  • 11.4. DFT results of thin films
  • 11.5. Difference between bulk and thin films
  • 11.6. The first change: Cutting the hopping term and intrinsic confinement effect
  • 11.7. Additional effects from the surface/interface and spin-orbit coupling
  • 11.8. Correlation effects on confined d electrons
  • 11.9. Discussion of SrRuO3 (001) and (111) thin films
  • 11.10. Summary
  • References
  • Chapter 12: Computational study of energy materials
  • 12.1. Introduction
  • 12.2. Atomic simulation methodology
  • 12.2.1. Background
  • 12.2.2. Density functional theory
  • 12.2.3. Molecular dynamics
  • 12.3. The role of point defects in MO
  • 12.3.1. Point defects
  • 12.3.2. Point defects and diffusion
  • 12.4. Intrinsic defects in MoO3
  • 12.4.1. Motivation
  • 12.4.2. Density of states
  • 12.5. Hydrogen defects in WO3
  • 12.5.1. Motivation
  • 12.5.2. Structure and formation of H defects in WO3
  • 12.6. Oxygen diffusion in doped CeO2
  • 12.6.1. Motivation
  • 12.6.2. Doping and codoping
  • 12.6.3. Impact of strain
  • 12.7. Summary and future perspectives
  • References
  • Chapter 13: High-mobility two-dimensional electron gases at complex oxide interfaces
  • 13.1. Introduction
  • 13.2. 2DEGs at SrTiO3-based oxide interfaces
  • 13.2.1. 2DEGs at polar/nonpolar oxide interfaces
  • 13.2.1.1. LaAlO3/SrTiO3
  • 13.2.1.2. ?-Al2O3/SrTiO3 (GAO/STO)
  • 13.2.2. Delta-doped SrTiO3
  • 13.2.3. SrTiO32DEGs by strain-induced polarization
  • 13.2.4. 2DEGs at amorphous oxide interfaces
  • 13.3. Modulation-doping of oxide 2DEGs
  • 13.4. Conclusions and remarks
  • References
  • Chapter 14: Strain and interfaces for metal oxide-based memristive devices
  • 14.1. Introduction
  • 14.2. Fabrication of strained interfaces for mixed ionic-electronic multilayer conductors
  • 14.2.1. Growth of oriented thin films and description of the interfacial states
  • 14.2.1.1. Disorder at interfaces
  • 14.2.1.2. Misfit dislocations
  • 14.2.2. Thin film deposition
  • 14.3. Structural characterization of strained multilayer interfaces-A critical discussion of tools
  • 14.3.1. Characterization of strain at heterolayer interfaces
  • 14.3.1.1. X-ray diffraction-based techniques
  • 14.3.1.2. Raman spectroscopy techniques suited for area and phase analysis
  • 14.3.1.3. Transmission electron microscopy
  • 14.3.1.4. Wafer curvature measurement and in situ growth analysis with multi-beam optical stress sensors
  • 14.4. Integration of strained multilayer oxides to ionotronic devices: Modulation of memristance through interfacial stra ...
  • 14.5. A case study on the system Gd0.1Ce0.9O2-d/Er2O3
  • 14.5.1. Material considerations
  • 14.5.1.1. Material for the conducting phase of the multilayer
  • 14.5.1.2. Material for the insulating phase of a multilayer
  • 14.5.1.3. Material selection for strained multilayers-Electronic contributions to the total conductivity
  • 14.5.1.4. Substrate
  • 14.5.2. Fabrication
  • 14.5.3. Electric response and modulation of the memristance
  • 14.5.4. Conclusion
  • 14.6. Summary and outlook
  • References
  • Section D: Applications of metal oxide interfaces
  • Chapter 15: Metal oxide thin film-based low-temperature-operating solid oxide fuel cell by interface&sp
  • 15.1. What is solid oxide fuel cell (SOFC)?
  • 15.2. Why low-temperature-operating SOFC (LT-SOFC) is interesting?
  • 15.3. Operating temperature range of LT-SOFC
  • 15.4. Approaches for lowering the operating temperature of SOFCs
  • 15.5. Challenges in realizing proper metal oxide thin film structure in LT-SOFCs
  • 15.6. Free-standing-membrane-based LT-SOFCs: Micro-SOFCs
  • 15.7. LT-SOFCs fabricated over porous supports
  • 15.8. Concluding remarks
  • References
  • Chapter 16: Ionic conductivity of metal oxides: An essential property for all-solid-state lithium-ion ba
  • 16.1. MeO-based materials for all-solid-state LIBs
  • 16.1.1. MeO-based solid electrolytes
  • 16.1.2. Li3PO4 and LiPON
  • 16.1.3. LiTaO3 and LiNbO3
  • 16.1.4. Garnet-type MeO
  • 16.1.5. MeO-based cathode materials
  • 16.1.6. LiCoO2
  • 16.1.7. LiNiO2
  • 16.1.8. LiMnO2
  • 16.1.9. V2O5
  • 16.1.10. LiFePO4
  • 16.1.11. MeO-based anode materials
  • 16.1.12. SnO, SnO2, PbO, and PbO2
  • 16.1.13. TiO2 and Li4Ti5O12
  • 16.1.14. CoO and Co3O4
  • 16.2. Thin film deposition for all-solid-state Li-ion micro-batteries
  • 16.2.1. MeO-based solid electrolyte materials for thin film LIBs
  • 16.2.2. MeO-based cathode materials for thin film LIBs
  • 16.2.3. MeO-based anode materials for thin film LIBs
  • 16.3. 3D thin film deposition for all-solid-state Li-ion batteries
  • 16.4. Mobility of Li-ions in all-solid-state batteries
  • 16.5. Conclusions
  • References
  • Chapter 17: Nanoionics and interfaces for energy and information technologies
  • 17.1. Introduction to nanoionics: Beyond bulk properties
  • 17.2. Origin of nanoionics effects: Local defects and interfaces
  • 17.2.1. Atomistic picture of a broken symmetry: The grain boundary
  • 17.2.2. Space charge layer
  • 17.2.2.1. Formation of the space charge layer
  • 17.2.2.2. Tunability of the space charge layer
  • 17.2.3. The strain effect on ion mobility
  • 17.3. Strategies for the implementation of nanoionics in functional oxide thin films
  • 17.3.1. Grain boundary-dominated materials
  • 17.3.2. Strained epitaxial films
  • 17.4. Prospects for applications of nanoionics in metal oxide thin film-based devices for energy and information applications
  • References
  • Chapter 18: Thermoelectrics based on metal oxide thin films
  • 18.1. Introduction
  • 18.1.1. Thermoelectrics
  • 18.1.2. History of oxide thermoelectrics
  • 18.1.3. Two-dimensional electron system
  • 18.2. Epitaxial films of oxide thermoelectrics
  • 18.2.1. n-type oxides
  • 18.2.1.1. Electron-doped SrTiO3
  • 18.2.1.2. Electron-doped ZnO and related materials
  • 18.2.2. p-type oxides
  • 18.2.2.1. NaCoOx
  • 18.2.2.2. Ca3Co4O9
  • 18.3. Two-dimensional electron system for oxide thermoelectrics
  • 18.3.1. Oxide superlattices
  • 18.3.2. Oxide heterointerfaces
  • 18.3.3. Field-induced two-dimensional electron gas
  • 18.4. Summary and future prospect
  • References
  • Chapter 19: Ferroelectric and piezoelectric oxide nanostructured films for energy harvesting applications
  • 19.1. Introduction
  • 19.2. Ferroelectric oxide nanostructures with enhanced properties
  • 19.3. Piezoelectric oxide nanostructures for energy harvesting
  • 19.4. Outlook
  • References
  • Further reading
  • Chapter 20: Redox-based memristive metal-oxide devices
  • 20.1. Introduction
  • 20.2. Basic mechanisms of redox-based memristive switching
  • 20.2.1. Defect chemistry
  • 20.2.2. Redox reactions in memristive devices
  • 20.2.3. Electronic transport
  • 20.3. Filamentary switching
  • 20.3.1. Electroforming
  • 20.3.1.1. Ionic processes
  • 20.3.1.2. Location of the forming process
  • 20.3.1.3. Forming free devices
  • 20.3.2. Switching
  • 20.3.2.1. Experimental evidence for valence changes during switching
  • 20.3.2.2. Modeling of the switching process with inert electrodes
  • 20.3.2.3. Engineering the active interface
  • 20.4. Area-dependent switching
  • 20.5. Switching kinetics
  • 20.6. Fields of application
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,15 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen