Environmental Materials and Waste

Resource Recovery and Pollution Prevention
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 19. April 2016
  • |
  • 750 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803906-9 (ISBN)
 

Environmental Materials and Waste: Resource Recovery and Pollution Prevention contains the latest information on environmental sustainability as a wide variety of natural resources are increasingly being exploited to meet the demands of a worldwide growing population and economy.

These raw materials cannot, or can only partially, be substituted by renewable resources within the next few decades. As such, the efficient recovery and processing of mineral and energy resources, as well as recycling such resources, is now of significant importance.

The book takes a multidisciplinary approach to fully realize the number of by-products which can be remanufactured, providing the foundation needed across disciplines to tackle this issue. As awareness and opportunities to recover valuable resources from process and bleed streams is gaining interest, sustainable recovery of environmental materials, including wastewater, offers tremendous opportunity to combine profitable and sustainable production.


  • Presents a state-of-the-art guide to environmental sustainability
  • Provides an overview of the field highlighting recent and emerging issues in environmental resource recovery that cover a wide array of by-products for remanufacture potential
  • Details a multidisciplinary approach to fully realize the number of by-products which can be remanufactured, providing the foundation needed across disciplines to tackle these global issues
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 16,08 MB
978-0-12-803906-9 (9780128039069)
012803906X (012803906X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Environmental Materials and Waste
  • Environmental Materials and Waste: Resource Recovery and Pollution Prevention
  • Copyright
  • Contents
  • List of Contributors
  • Foreword
  • Preface
  • Acknowledgments
  • 1 - RECOVERY OF RESOURCES FROM BIOWASTE FOR POLLUTION PREVENTION
  • 1.1 INTRODUCTION
  • 1.2 BIOWASTE MANAGEMENT
  • 1.3 BIOREMEDIATION OF WASTE DISPOSED LAND OR EXISTING LANDFILLS
  • 1.4 SOLID WASTE MANAGEMENT: AN INDIAN PERSPECTIVE
  • 1.4.1 USE OF BIOWASTE FROM BIOREMEDIATION: THE CASE OF AQUATIC WEEDS
  • 1.5 FOOD WASTE TO FEED FISH
  • 1.6 BIOLOGICAL RECULTIVATION OF PETROLEUM INDUSTRY-RAVAGED LAND
  • 1.7 CONCLUSION
  • Acknowledgments
  • REFERENCES
  • 2 - DESTINATION OF VINASSE, A RESIDUE FROM ALCOHOL INDUSTRY: RESOURCE RECOVERY AND PREVENTION OF POLLUTION
  • 2.1 INTRODUCTION
  • 2.2 CHARACTERIZATION OF VINASSE
  • 2.2.1 INORGANIC CONTENT OF VINASSE
  • 2.2.2 ORGANIC CONTENT OF VINASSE
  • 2.3 APPLICATIONS OF VINASSE
  • 2.3.1 THE USE OF VINASSE AS A RESOURCE
  • 2.3.2 NUTRIENT SOURCE FOR PLANTS
  • 2.3.3 NUTRIENT SOURCE FOR MICROORGANISMS
  • 2.3.4 OTHER APPLICATIONS
  • 2.4 ENVIRONMENTAL CONCERNS REGARDING VINASSE MANAGEMENT
  • Acknowledgments
  • REFERENCES
  • 3 - BIOSOLIDS ENHANCE MINE SITE REHABILITATION AND REVEGETATION*
  • 3.1 INTRODUCTION
  • 3.2 GENERATION AND COMPOSITION OF BIOSOLIDS
  • 3.2.1 GENERATION OF BIOSOLIDS
  • 3.2.2 COMPOSITION OF BIOSOLIDS
  • 3.3 LAND APPLICATION OF BIOSOLIDS AND POLLUTION PREVENTION
  • 3.3.1 HEAVY METALS
  • 3.3.2 NUTRIENTS
  • 3.3.3 PATHOGENS
  • 3.3.4 ODOR EMISSIONS
  • 3.3.5 GREENHOUSE GAS EMISSIONS
  • 3.3.6 EMERGING CONTAMINANTS
  • 3.4 REGULATIONS OF BIOSOLIDS USE
  • 3.5 EFFECTS OF ADDITION OF BIOSOLIDS IN MINE SITE REHABILITATION
  • 3.5.1 PHYSICAL CHARACTERISTICS
  • 3.5.2 CHEMICAL CHARACTERISTICS
  • 3.5.3 BIOLOGICAL CHARACTERISTICS
  • 3.6 CONCLUSIONS, CHALLENGES, AND FUTURE RESEARCH NEEDS
  • Acknowledgments
  • REFERENCES
  • 4 - APPLICATION OF BIOCHAR PRODUCED FROM BIOWASTE MATERIALS FOR ENVIRONMENTAL PROTECTION AND SUSTAINABLE AGRICULTUR ...
  • 4.1 INTRODUCTION
  • 4.2 SOURCES OF BIOWASTE
  • 4.2.1 MUNICIPAL SOLID WASTE
  • 4.2.2 BIOSOLIDS
  • 4.2.3 ANIMAL AND POULTRY MANURE
  • 4.2.4 PAPER MILL SLUDGE
  • 4.2.5 OTHER ORGANIC WASTES
  • 4.3 SYNTHESIS AND CHARACTERIZATION OF BIOCHAR
  • 4.3.1 PRODUCTION METHODS
  • 4.3.2 BIOCHAR CHARACTERIZATION
  • 4.4 ENVIRONMENTAL APPLICATIONS
  • 4.4.1 HEAVY METAL(LOID)S
  • 4.4.2 ORGANIC CONTAMINANTS
  • 4.5 AGRICULTURAL APPLICATIONS
  • 4.5.1 AMMONIA VOLATILIZATION
  • 4.5.2 NITROUS OXIDE EMISSION
  • 4.5.3 NITRATE LEACHING
  • 4.5.4 PHOSPHORUS LEACHING
  • 4.6 CASE STUDIES
  • 4.7 CONCLUSION
  • REFERENCES
  • 5 - PRODUCTION AND UTILIZATION OF BIOCHAR FROM ORGANIC WASTES FOR POLLUTANT CONTROL ON CONTAMINATED SITES
  • 5.1 INTRODUCTION
  • 5.2 BIOCHAR PRODUCTION AND PROPERTIES
  • 5.3 BIOCHAR APPLICATION AT CONTAMINATED SITES
  • 5.3.1 BIOCHAR IN SOIL IMPROVEMENT
  • 5.3.2 INTERACTION OF CONTAMINANTS WITH BIOCHAR
  • 5.3.2.1 Inorganic Pollutants
  • 5.3.2.2 Organic Pollutants
  • Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, and Halogenated Hydrocarbon Compounds
  • Pesticides and Herbicides
  • 5.3.3 BIOCHAR-BASED SOIL REMEDIATION FOR SITE-SPECIFIC CONTAMINANTS: CASE STUDIES
  • 5.3.4 INFLUENCE ON MICROBIAL ACTIVITY/BIODEGRADATION OF ORGANIC CONTAMINANTS
  • 5.4 BIOCHAR, POLLUTANTS, AND PLANT INTERACTIONS
  • 5.5 SUMMARY AND FUTURE PERSPECTIVES
  • Acknowledgment
  • REFERENCES
  • 6 - MUNICIPAL SOLID WASTE BIOCHAR FOR PREVENTION OF POLLUTION FROM LANDFILL LEACHATE
  • 6.1 INTRODUCTION
  • 6.1.1 GENERATION AND DISPOSAL OF MUNICIPAL SOLID WASTE
  • 6.1.2 OPEN DUMP SITES AND ENVIRONMENTAL POLLUTION
  • 6.1.3 STRATEGIES FOR PREVENTION OF POLLUTION FROM LANDFILLS
  • 6.1.3.1 Prevention of Air Pollution
  • 6.1.4 PREVENTION OF WATER AND SOIL POLLUTION
  • 6.1.4.1 Characteristics of Leachates
  • 6.1.4.2 Treatment of Landfill Leachate
  • 6.1.4.3 Parameter Considerations for Leachate Treatment
  • 6.1.4.4 Major Challenges in Leachate Treatment
  • 6.2 A GREENER TRANSFORMATION OF MUNICIPAL SOLID WASTE TO MUNICIPAL SOLID WASTE-BIOCHAR
  • 6.2.1 OVERVIEW
  • 6.2.2 A SUSTAINABILITY PLATFORM FOR MUNICIPAL SOLID WASTE TRANSFORMATION
  • 6.2.3 MUNICIPAL SOLID WASTE-BIOCHAR PRODUCTION
  • 6.2.3.1 Technology
  • Feedstock Properties
  • The Thermal Pathway
  • 6.2.3.2 Characteristics of Municipal Solid Waste-Biochar
  • 6.3 MUNICIPAL SOLID WASTE-BIOCHAR FOR LANDFILL COVER
  • 6.3.1 MUNICIPAL SOLID WASTE-BIOCHAR AS AN ADSORBENT AND A SUBSTRATE FOR LANDFILL COVER
  • 6.4 MUNICIPAL SOLID WASTE-BIOCHAR IN THE TREATMENT OF LANDFILL LEACHATE
  • 6.4.1 MUNICIPAL SOLID WASTE-BIOCHAR AS SORBENT
  • 6.4.2 THE POTENTIAL OF MUNICIPAL SOLID WASTE-BIOCHAR FOR THE REMOVAL OF HEAVY METAL AND ORGANIC POLLUTANTS
  • 6.5 POTENTIAL TO BE USED AS A MATERIAL FOR PERMEABLE REACTIVE BARRIER
  • 6.5.1 OVERVIEW OF PERMEABLE REACTIVE BARRIER APPLICABILITY
  • 6.5.2 POTENTIAL APPLICABILITY OF MUNICIPAL SOLID WASTE-BIOCHAR INSTEAD OF BIOCHAR
  • 6.6 POTENTIAL OF MUNICIPAL SOLID WASTE-BIOCHAR FOR LANDFILL STABILIZATION
  • 6.7 REMARKS
  • Acknowledgments
  • REFERENCES
  • 7 - REMOVAL AND RECOVERY OF METALS BY BIOSORBENTS AND BIOCHARS DERIVED FROM BIOWASTES
  • 7.1 INTRODUCTION
  • 7.2 PRECIOUS METALS AND HEAVY METALS
  • 7.3 SOURCES OF HEAVY METALS AND PRECIOUS METALS
  • 7.3.1 SOURCES OF HEAVY METALS
  • 7.3.1.1 Municipal Wastewater and Storm Water
  • 7.3.1.2 Farm Wastewater
  • 7.3.1.3 Industrial Wastewater
  • 7.3.2 SOURCES OF PRECIOUS METALS
  • 7.3.2.1 Municipal Solid Waste
  • 7.3.2.2 Electrical and Electronic Equipment Waste
  • 7.3.2.3 Heterogeneous Catalytic Wastes
  • 7.3.2.4 Aqueous wastes
  • Used Electroplating and Other Aqueous Solutions
  • Hydrometallurgy Waste Solutions
  • Waste Homogeneous Catalysts Solution
  • 7.4 REMOVAL AND RECOVERY OF HEAVY METALS AND PRECIOUS METALS USING BIOSORBENTS AND BIOCHARS
  • 7.4.1 BIOSORBENTS
  • 7.4.2 BIOCHAR
  • 7.5 SOURCES AND TYPES OF BIOWASTES FOR BIOSORBENTS AND BIOCHAR PRODUCTION
  • 7.5.1 ALGAL BIOMASS
  • 7.5.2 AGRICULTURAL AND FOOD INDUSTRY BIOWASTES FOR BIOSORBENTS AND BIOCHAR
  • 7.5.3 PROCESSES FOR BIOCHAR PRODUCTION
  • 7.5.3.1 Slow and Fast Pyrolysis Biochar
  • 7.5.3.2 Torrefaction Process
  • 7.5.3.3 Gasification
  • 7.5.3.4 Hydrochars
  • 7.6 CONVENTIONAL TECHNIQUES OF HEAVY METALS AND PRECIOUS METALS REMOVAL AND RECOVERY
  • 7.6.1 PYROMETALLURGICAL PROCESS
  • 7.6.2 HYDROMETALLURGICAL PROCESS
  • 7.7 SPECIFICATIONS OF BIOSORBENTS AND BIOCHAR FOR METAL RECOVERY
  • 7.7.1 APPLICABILITY OF BIOSORBENTS AND BIOCHAR IN PRECIOUS METAL AND HEAVY METAL REMOVAL AND RECOVERY PROCESS
  • 7.7.2 HIGH SORPTION CAPACITY
  • 7.7.2.1 Ion-Exchange-Electrostatic Interaction
  • 7.7.2.2 Metal Complexation Mechanisms
  • 7.7.2.3 Reduction-Coupled Sorption/Precipitation
  • 7.8 KINETICS OF METAL REMOVAL BY BIOSORBENT AND BIOCHAR (TIME OF REMOVAL)
  • 7.9 STABILITY IN AQUATIC ENVIRONMENTS
  • 7.10 PROCEDURES FOR INCREASING SORPTION CAPACITY
  • 7.10.1 PRETREATMENTS
  • 7.10.1.1 Increasing the Number of Sorption/Binding Sites
  • 7.10.1.2 Removing Interfering Sorption Sites
  • 7.10.1.3 Coating With Ionic Polymers
  • 7.11 APPROACHES TO ENHANCE SORPTION KINETICS OF BIOSORBENTS AND BIOCHARS
  • 7.12 STRATEGIES FOR STABLE BIOCHARS AND BIOSORBENTS
  • 7.13 RECOVERY OF METALS AND REGENERATION OF BIOSORBENTS AND BIOCHARS
  • 7.14 CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 8 - BIODIESEL PRODUCTION FROM WASTEWATER USING OLEAGINOUS YEAST AND MICROALGAE
  • 8.1 INTRODUCTION
  • 8.2 MATERIALS AND METHODS
  • 8.2.1 MATERIALS
  • 8.2.1.1 Strains
  • 8.2.1.2 Medium
  • 8.2.1.3 Wastewater
  • 8.2.2 EXPERIMENTAL SETUP
  • 8.2.2.1 Orthogonal Experiments for Different Wastewater Samples
  • 8.2.2.2 Influence of Initial Cell Density
  • 8.2.2.3 Mixed Culture of Yeast and Microalgae
  • 8.2.2.4 Biodiesel Production Experiment
  • 8.2.3 ANALYTICAL METHODS
  • 8.3 RESULTS AND DISCUSSION
  • 8.3.1 LIPID PRODUCTION FROM DIFFERENT WASTEWATERS BY OLEAGINOUS YEAST
  • 8.3.1.1 Characterization of Wastewaters
  • 8.3.1.2 Domestic Wastewater
  • 8.3.1.3 Beer Brewery Wastewater
  • 8.3.1.4 Milk Candy Wastewater
  • 8.3.1.5 Rice Wine Distillery Wastewater
  • 8.3.1.6 Comparison of Different Wastewaters
  • 8.3.2 INFLUENCE OF INITIAL CELL DENSITY IN RICE WINE DISTILLERY WASTEWATER UNDER NONSTERILE CONDITIONS
  • 8.3.2.1 Orthogonal Experiment Using Nonsterile Distillery Wastewater
  • 8.3.2.2 Optimization Experiment
  • 8.3.3 MIXED CULTURE OF YEAST AND MICROALGAE
  • 8.3.3.1 Comparison of Pure and Mixed Cultures
  • 8.3.3.2 Effect of Harvesting Part of Biomass in Mixed Culture
  • 8.3.3.3 Influence of Microalgal Initial Cell Density on Mixed Culture
  • 8.3.4 BIODIESEL PRODUCTION
  • 8.4 CONCLUSION
  • Acknowledgments
  • REFERENCES
  • 9 - UTILIZATION OF SLUDGE AS MANURE
  • 9.1 INTRODUCTION
  • 9.2 MATERIALS AND METHODS
  • 9.3 RESULTS
  • 9.3.1 FIRST TEST
  • 9.3.2 SECOND TEST
  • 9.3.3 THIRD TEST
  • 9.3.4 DISCUSSION
  • 9.4 CONCLUSIONS
  • REFERENCES
  • 10 - ENERGY AND RESOURCE RECOVERY FROM SLUDGE: FULL-SCALE EXPERIENCES
  • 10.1 INTRODUCTION
  • 10.2 SLUDGE CHARACTERIZATION
  • 10.3 METHODS FOR ENERGY AND RESOURCE RECOVERY
  • 10.3.1 ANAEROBIC DIGESTION
  • 10.3.2 INCINERATION AND CO-INCINERATION
  • 10.3.3 GASIFICATION
  • 10.3.4 PYROLYSIS
  • 10.3.5 WET AIR OXIDATION
  • 10.3.6 SUPERCRITICAL WATER OXIDATION
  • 10.3.7 HYDROTHERMAL TREATMENT
  • 10.4 ENERGY AND RESOURCE RECOVERY
  • 10.4.1 BIOGAS RECOVERY BY ANAEROBIC DIGESTION
  • 10.4.2 NUTRIENT RECOVERY
  • 10.4.3 HEAVY METALS RECOVERY
  • 10.4.4 BIOFUEL PRODUCTION
  • 10.4.4.1 Hydrogen
  • 10.4.4.2 Syngas (H2+CO)
  • 10.4.4.3 Bio-oil
  • 10.4.4.4 Bio-diesel
  • 10.4.5 CONSTRUCTION MATERIAL
  • 10.4.6 ELECTRICITY PRODUCTION FROM SLUDGE BY MICROBIAL FUEL CELLS
  • 10.4.7 BIOPLASTIC
  • 10.4.8 BIOFERTILIZERS
  • 10.5 OVERALL STATUS OF SLUDGE REUSE FOR ENERGY AND RESOURCE RECOVERY
  • 10.6 SUMMARY
  • REFERENCES
  • 11 - CHROMITE
  • 11.1 CHROMITE RESOURCES: GLOBAL AND IN TURKEY
  • 11.2 RAW MATERIALS USED IN INDUSTRY AND WASTE GENERATED
  • 11.2.1 WASTES OF CHROMITE MINING
  • 11.2.2 WASTES OF BENEFICIATION
  • 11.2.3 WASTES OF SMELTERS
  • 11.2.3.1 Waste of Refractory Industry
  • 11.2.3.2 Waste of Metallurgical Industry
  • 11.2.3.3 Waste of Chemical Industry
  • 11.2.3.4 Waste of Foundry Sand Industry
  • 11.3 TOXIC EFFECT OF CHROMIUM WASTES ON HUMANS
  • 11.4 RECOVERY OF USEFUL PRODUCTS FROM CHROMITE INDUSTRY
  • Acknowledgments
  • REFERENCES
  • 12 - DETOXIFICATION AND RESOURCE RECOVERY OF CHROMIUM-CONTAINING WASTES
  • 12.1 CHROMIUM WASTES
  • 12.1.1 CHROMIUM AND POLLUTION SOURCES
  • 12.1.2 CHARACTERISTICS OF CHROMIUM SPECIATIONS
  • 12.1.3 CHROMITE ORE-PROCESSING RESIDUE
  • 12.1.4 FERROCHROME AND STAINLESS-STEEL PLANTS: DUST AND WASTE ACID TREATMENT SLUDGE
  • 12.1.5 LEATHER INDUSTRY: TANNING AND POSTTANNING WASTES
  • 12.2 REGULATIONS FOR CHROMIUM IN WASTES AND ENVIRONMENT MATRIX
  • 12.3 SIMPLE DETOXIFICATION AND DISPOSAL
  • 12.4 STABILIZATION/SOLIDIFICATION PROCESSES
  • 12.4.1 BASIC CEMENTATION PROCESSES
  • 12.4.2 MODIFIED CEMENTATION PROCESSES
  • 12.4.3 LIME-BASED STABILIZATION/SOLIDIFICATION PROCESSES
  • 12.4.4 THERMAL STABILIZATION PROCESSES
  • 12.5 SECONDARY RECYCLING
  • 12.5.1 CEMENT
  • 12.5.2 GLASS-CERAMIC MATERIALS
  • 12.5.3 BRICKS
  • 12.5.4 PIGMENTS
  • 12.6 SUMMARY
  • Acknowledgments
  • REFERENCES
  • 13 - ASBESTOS: RESOURCE RECOVERY AND ITS WASTE MANAGEMENT
  • 13.1 INTRODUCTION
  • 13.2 WORLD SCENARIO OF ASBESTOS
  • 13.2.1 WORLDWIDE PRODUCTION AND CONSUMPTION
  • 13.2.2 USE OF ASBESTOS AND ITS WASTE
  • 13.2.3 SUBSTITUTES OF ASBESTOS
  • 13.3 ENVIRONMENTAL AND HEALTH IMPACT OF ASBESTOS
  • 13.3.1 ENVIRONMENTAL IMPACT
  • 13.3.2 HEALTH IMPACT
  • 13.4 CLEANUP TECHNOLOGIES
  • 13.4.1 PHYTOREMEDIATION
  • 13.4.1.1 Plant and Lichen Colonization
  • 13.4.2 BIOREMEDIATION
  • 13.5 CASE STUDIES
  • 13.5.1 INDIA
  • REFERENCES
  • 14 - RESOURCE POTENTIAL OF NATURAL AND SYNTHETIC GYPSUM WASTE
  • 14.1 INTRODUCTION
  • 14.2 NATURAL GYPSUM APPLICATIONS AND REUSE
  • 14.3 SYNTHETIC GYPSUM
  • 14.4 FLUE GAS DESULFURIZATION GYPSUM
  • 14.5 PROCESSING FLUE GAS DESULFURIZATION GYPSUM
  • 14.6 PHOSPHATE MINERAL FERTILIZERS: P2O5
  • 14.7 PRODUCTION OF PHOSPHORIC ACID
  • 14.7.1 MANUFACTURING PROCESS OF PHOSPHORIC ACID
  • 14.7.1.1 Wet Process
  • 14.8 CHARACTERISTICS OF PHOSPHOGYPSUM
  • 14.9 MANAGEMENT AND HANDLING OF PHOSPHOGYPSUM
  • 14.10 PHOSPHOGYPSUM IN PHOSPHORIC ACID PLANTS
  • 14.11 USE OF PHOSPHOGYPSUM
  • 14.12 APPLICATION OF PHOSPHOGYPSUM IN AREAS OF ENVIRONMENT AND MATERIAL SCIENCE
  • 14.13 DIFFERENT TYPES OF BY-PRODUCTS OF GYPSUM
  • 14.13.1 PHOSPHOGYPSUM
  • 14.13.2 TITANOGYPSUM
  • 14.13.3 CITROGYPSUM
  • 14.13.4 FLUOROANHYDRITE
  • 14.13.5 OTHER SYNTHETIC GYPSUM
  • 14.14 MANUFACTURE OF AMMONIUM SULFATE
  • 14.15 FLUE GAS DESULFURIZATION GYPSUM AS A SOURCE OF CALCIUM AND SULFUR FOR CROPS
  • 14.16 URANIUM RECOVERY FROM PHOSPHORIC ACID VIA HYDROMETALLURGY AND SOLVENT EXTRACTION
  • Acknowledgments
  • REFERENCES
  • 15 - METALLIFEROUS WASTE IN INDIA AND KNOWLEDGE EXPLOSION IN METAL RECOVERY TECHNIQUES AND PROCESSES FOR THE PREVEN ...
  • 15.1 INTRODUCTION
  • 15.2 MINERALS AND METALS MASS CONSUMPTION
  • 15.2.1 FUEL COMBUSTION
  • 15.2.1.1 Coal-Fired Power Plants
  • 15.2.1.2 Wood Fuel Combustion
  • 15.2.2 WASTE RECYCLING OPERATIONS
  • 15.2.2.1 Metal Content in Waste: Indian Scenario
  • 15.2.2.2 Recycling
  • 15.2.2.2.1 Waste of Electrical and Electronic Equipment
  • 15.2.3 MINING, SMELTING, AND SECONDARY PRODUCTION
  • 15.2.3.1 Copper
  • 15.2.3.2 Zinc
  • 15.2.3.3 Lead
  • 15.2.4 MAJOR BUILDING MATERIALS: CEMENT AND STEEL
  • 15.2.4.1 Steel
  • 15.2.5 ARSENIC
  • 15.2.6 MERCURY
  • 15.2.7 LEAD
  • 15.3 HUMAN EXPOSURE TO METALS THROUGH FOOD AND COSMETICS
  • 15.3.1 SEAFOOD
  • 15.3.2 CONTAMINATION OF MAJOR FOOD SOURCES IN INDIA
  • 15.4 METAL RECOVERY TECHNIQUES AND PROCESSES FOR THE PREVENTION OF POLLUTION
  • 15.4.1 PHYSICAL METHODS
  • 15.4.1.1 Adsorption
  • 15.4.1.2 Membrane Filtration Techniques
  • 15.4.1.2.1 Ultrafiltration
  • 15.4.1.2.2 Reverse Osmosis
  • 15.4.1.2.3 Nanofiltration
  • 15.4.1.2.4 Electrodialysis
  • 15.4.1.3 Flotation
  • 15.4.2 CHEMICAL METHODS
  • 15.4.2.1 Chemical Leaching
  • 15.4.2.2 Chemical Precipitation
  • 15.4.2.2.1 Hydroxide Precipitation
  • 15.4.2.2.2 Sulfide Precipitation
  • 15.4.2.2.3 Heavy Metal Chelating Precipitation
  • 15.4.3 ELECTROCHEMICAL
  • 15.4.4 BIOLOGICAL METHODS
  • 15.4.4.1 Biosorption
  • 15.4.4.2 Bioaccumulation
  • 15.4.4.3 Phytoextraction and Agro-mining
  • 15.4.4.4 Biosurfactants
  • 15.4.5 ADVANCED BIOLOGICAL METHODS: BIOELECTROCHEMICAL SYSTEMS
  • 15.4.5.1 In Situ Potential Influence on Metal Recovery in Anodic and Cathodic Chamber
  • 15.4.5.2 Ex Situ Potential for Recovery of Metals in Bioelectrochemical Systems
  • 15.5 POLLUTION PREVENTION
  • Acknowledgments
  • REFERENCES
  • 15 . APPENDIX 1: EMISSION FACTORS OF TRACE METALS
  • 16 - RESOURCES RECOVERY FROM WASTEWATER BASED ON EXTRACELLULAR ELECTRON TRANSFER
  • 16.1 INTRODUCTION TO EXTRACELLULAR ELECTRON TRANSFER
  • 16.1.1 BACKGROUND
  • 16.1.2 MICROBIAL "RESPIRATION"
  • 16.2 EXTRACELLULAR ELECTRON TRANSFER
  • 16.2.1 EXTRACELLULAR ELECTRON TRANSFER TYPE AND MECHANISM
  • 16.2.2 INDIRECT ELECTRON TRANSFER
  • 16.2.3 DIRECT ELECTRON TRANSFER
  • 16.3 RESOURCES RECOVERY BASED ON EXTRACELLULAR ELECTRON TRANSFER
  • 16.3.1 METALS
  • 16.3.2 NUTRIENTS
  • 16.3.3 HYDROGEN
  • 16.3.4 METHANE
  • 16.3.5 ETHANOL
  • 16.3.6 DIOXIDANE AND HYDROGEN PEROXIDE
  • 16.4 SUMMARY AND FUTURE PERSPECTIVE
  • REFERENCES
  • 17 - ACID MINE DRAINAGES FROM ABANDONED MINES: HYDROCHEMISTRY, ENVIRONMENTAL IMPACT, RESOURCE RECOVERY, AND PREVENT ...
  • 17.1 INTRODUCTION
  • 17.2 ORIGINS OF ACID MINE DRAINAGE
  • 17.2.1 PYRITE OXIDATION MECHANISMS
  • 17.2.2 SULFIDE WEATHERING PRODUCTS
  • 17.2.2.1 Pyrite Weathering Products
  • 17.3 CHARACTERISTICS OF ACID MINE DRAINAGE
  • 17.3.1 PH, ACIDITY, AND ALKALINITY
  • 17.3.2 HEAVY METAL CONCENTRATIONS
  • 17.3.3 IRON AND ALUMINUM CONCENTRATIONS
  • 17.3.4 SULFATE AND ARSENATE CONCENTRATIONS
  • 17.3.5 TURBIDITY AND SUSPENDED SOLIDS
  • 17.4 FACTORS CONTROLLING THE FORMATION OF ACID MINE DRAINAGE
  • 17.5 ENVIRONMENTAL IMPACT OF ACID MINE DRAINAGE
  • 17.5.1 IMPACT ON WATER QUALITY
  • 17.5.2 IMPACT ON THE FLUVIAL ECOSYSTEM
  • 17.5.3 VISUAL IMPACT
  • 17.6 RESOURCE RECOVERY FROM ACID MINE DRAINAGE
  • 17.6.1 APPLICATION OF FILTER MATERIALS
  • 17.6.1.1 Use of Lignite
  • 17.6.1.2 Uses of Fly Ash
  • 17.6.1.3 Uses of Chitin
  • 17.6.2 USING MODULAR BIOREACTORS
  • 17.6.3 USING PERMEABLE REACTIVE BARRIERS
  • 17.7 PREVENTION, MITIGATION, AND TREATMENT OF ACID MINE DRAINAGE
  • 17.7.1 PASSIVE TREATMENT METHODS
  • 17.7.1.1 Aerobic Wetlands
  • 17.7.1.2 Anaerobic Wetlands/Compost Bioreactors
  • 17.7.1.3 Anoxic Limestone Drains
  • 17.7.1.4 Successive Alkalinity-Producing System
  • 17.7.1.5 Permeable Reactive Barriers
  • 17.8 HYDROCHEMISTRY OF ACID MINE DRAINAGES AND SUPERFICIAL WATERS FROM ABANDONED MINES OF NORTH PORTUGAL: ENVIRONMENTAL IMPLICATIONS
  • 17.8.1 STUDY AREAS
  • 17.8.2 METHODS
  • 17.8.3 RESULTS AND DISCUSSION
  • 17.8.4 CONCLUSIONS
  • REFERENCES
  • 18 - RESTORATION OF SMELTER INDUSTRIAL BARRENS FOLLOWING POLLUTION REDUCTION DRIVES ECONOMIC RECOVERY
  • 18.1 INTRODUCTION
  • 18.2 THE SUDBURY EXPERIENCE
  • 18.3 THE KOLA STORY
  • 18.4 COMMON SOLUTIONS
  • 18.5 LESSONS TO BE LEARNED
  • Acknowledgments
  • REFERENCES
  • 19 - METHODS FOR UTILIZATION OF RED MUD AND ITS MANAGEMENT
  • 19.1 INTRODUCTION
  • 19.2 RED MUD CHEMISTRY
  • 19.2.1 RED MUD GENERATION
  • 19.2.2 CONSTITUENT OF RED MUD
  • 19.2.3 INTERNATIONAL STATUS OF RED MUD MANAGEMENT
  • 19.2.4 CURRENT STATUS OF RED MUD MANAGEMENT IN INDIA
  • 19.2.5 PROBLEM RELATED TO RED MUD MANAGEMENT
  • 19.3 METHODS FOR THE USE OF RED MUD
  • 19.3.1 RECOVERY OF VALUABLE ELEMENTS FROM RED MUD
  • 19.3.1.1 Recovery of Divalent Metals From Red Mud
  • 19.3.1.2 Recovery of Rare Earth Metals From Red Mud
  • 19.3.2 USE OF RED MUD AS BUILDING MATERIALS
  • 19.3.2.1 Cement
  • 19.3.2.2 Concrete Preparation
  • 19.3.2.3 Brick Production
  • 19.3.2.4 Glass Ceramics
  • 19.3.2.5 Corrosion-Resistant Materials
  • 19.3.3 USE OF RED MUD AS PIGMENT
  • 19.3.4 USE OF RED MUD AS FILLING MATERIAL
  • 19.3.5 USE OF RED MUD IN WASTEWATER TREATMENT
  • 19.3.5.1 Removal of Phosphorus
  • 19.3.5.2 Removal of Fluoride
  • 19.3.5.3 Removal of Nitrate
  • 19.3.5.4 Removal of Other Metal Ions
  • 19.3.5.5 Removal of Dyes
  • 19.3.5.6 Removal of Organic Pollutants
  • 19.3.5.7 Removal of Bacteria and Virus
  • 19.3.6 USE OF RED MUD TO ADSORB AND PURIFY TOXIC WASTE GASES
  • 19.3.7 USE OF RED MUD AS CATALYST
  • 19.3.7.1 Use of Red Mud as Hydrogenation Catalyst
  • 19.3.7.2 Use of Red Mud as Catalyst in Dechlorination and Hydrodechlorination Reaction
  • 19.3.7.3 Use of Red Mud as Catalyst in Oxidation of Hydrocarbon
  • 19.4 CONCLUSION
  • ABBREVIATIONS
  • Acknowledgments
  • REFERENCES
  • 20 - THERMAL BEHAVIOR OF RED MUD AND ITS BENEFICIAL USE IN GLASS-CERAMIC PRODUCTION
  • 20.1 INTRODUCTION
  • 20.2 CHARACTERIZATION OF RED MUD
  • 20.2.1 GENERATION OF RED MUD
  • 20.2.2 CHEMICAL AND PHASE COMPOSITIONS OF RED MUD
  • 20.3 THERMAL ANALYSIS
  • 20.3.1 ANALYSIS OF THERMOGRAVIMETRY, DERIVATIVE THERMOGRAVIMETRY, DIFFERENTIAL SCANNING CALORIMETRY, AND DIFFERENTIAL THERMAL ANALYSIS
  • 20.3.2 THERMALLY PHASE TRANSFORMATIONS AND PROCESSES
  • 20.4 THERMALLY IMMOBILIZING HAZARDOUS METALS
  • 20.5 MAKING GLASS-CERAMIC
  • 20.6 FUTURE RESEARCH
  • Acknowledgments
  • REFERENCES
  • 21 - CLAY MINERALS: STRUCTURE, CHEMISTRY, AND SIGNIFICANCE IN CONTAMINATED ENVIRONMENTS AND GEOLOGICAL CO2 SEQUESTR ...
  • 21.1 INTRODUCTION
  • 21.2 TYPES, STRUCTURE, CLASSIFICATION, AND CHARACTERISTICS OF CLAY MINERALS
  • 21.2.1 CLAY MINERALS: STRUCTURE AND CHEMISTRY
  • 21.3 CLAY MINERALS AND ENVIRONMENTAL APPLICATIONS
  • 21.3.1 CLAY MINERALS AS SORBENTS FOR TOXIC GASEOUS CONTAMINANTS
  • 21.3.2 CLAY MINERALS FOR IMMOBILIZATION OF ENVIRONMENTAL CONTAMINANTS
  • 21.3.2.1 Heavy Metal Immobilization
  • Interlayer Sorption of Heavy Metals
  • Edge Site Sorption of Heavy Metals
  • Surface Complexation of Heavy Metal Cations
  • Surface Complexation of Heavy Metal Anions
  • 21.4 SORPTION OF ORGANIC CONTAMINANTS
  • 21.4.1 SORPTION OF DYES, ANTIBIOTICS, AND OTHER ORGANIC CONTAMINANTS
  • 21.5 HEAVY METAL AND METALLOID INTERACTIONS WITH CLAY MINERALS UNDER NATURAL AND ENGINEERED ENVIRONMENTAL CONDITIONS
  • 21.6 CLAY MINERALS AND CO2 SEQUESTRATION
  • 21.7 CLAY MINERAL WEATHERING AND METAL CATION LEACHING IN THE SOIL AND SEDIMENT ENVIRONMENTS
  • 21.8 SUMMARY AND CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 22 - ZEOLITE FOR NUTRIENT STRIPPING FROM FARM EFFLUENTS
  • 22.1 INTRODUCTION
  • 22.2 PROPERTIES OF NATURAL ZEOLITE
  • 22.3 MODIFICATION OF NATURAL ZEOLITE
  • 22.3.1 ACID-BASE TREATMENT
  • 22.3.2 INORGANIC SALT OR SURFACTANT MODIFICATION
  • 22.4 APPLICATION OF ZEOLITE IN WASTEWATER TREATMENT
  • 22.4.1 NUTRIENTS
  • 22.4.2 HEAVY METALS
  • 22.4.3 ORGANIC CONTAMINANTS
  • 22.5 BIOMASS PRODUCTION
  • 22.6 REVEGETATION POTENTIAL OF NUTRIENT-ENRICHED ZEOLITE
  • 22.7 CONCLUSIONS
  • Acknowledgment
  • REFERENCES
  • 23 - NATURAL AND SURFACTANT-MODIFIED ZEOLITE FOR THE REMOVAL OF POLLUTANTS (MAINLY INORGANIC) FROM NATURAL WATERS A ...
  • 23.1 INTRODUCTION
  • 23.2 STRUCTURE, PROPERTIES, AND SOURCES OF NATURAL ZEOLITE
  • 23.3 APPLICATIONS OF NATURAL ZEOLITE FOR ENVIRONMENTAL PURPOSES
  • 23.4 SURFACE MODIFICATION OF NATURAL ZEOLITE
  • 23.5 APPLICATIONS OF SURFACTANT-MODIFIED ZEOLITE FOR ENVIRONMENTAL PURPOSES
  • 23.5.1 REMOVAL OF INORGANIC ANIONIC POLLUTANTS
  • 23.5.2 REMOVAL OF INORGANIC CATIONIC POLLUTANTS
  • 23.5.3 REMOVAL OF ORGANIC POLLUTANTS
  • 23.6 CONCLUSIONS
  • REFERENCES
  • 24 - TREATMENT AND REUSE OF INCINERATION BOTTOM ASH
  • 24.1 INTRODUCTION
  • 24.2 BOTTOM ASH CHARACTERISTICS
  • 24.2.1 PHYSICAL CHARACTERISTICS
  • 24.2.2 CHEMICAL CHARACTERISTICS
  • 24.2.2.1 Inorganic Content
  • 24.2.2.2 Organic Content
  • 24.2.2.3 Mineralogy and Geochemical Characteristics
  • 24.2.2.4 Leaching Behavior
  • 24.3 BOTTOM ASH PROCESSING
  • 24.3.1 EXTRACTION AND SEPARATION
  • 24.3.1.1 Integrated Scrubbing
  • 24.3.1.2 Mechanical Separation
  • 24.3.1.3 Extraction With Water, Acids, and Chelating Agents
  • 24.3.2 CHEMICAL PROCESSES
  • 24.3.2.1 Natural Aging and Weathering
  • 24.3.2.2 Forced Carbonation
  • 24.3.2.3 Chemical Binding
  • 24.3.3 THERMAL PROCESSES
  • 24.3.3.1 Vitrification/Melting
  • 24.3.3.2 Sintering
  • 24.3.4 UTILIZATION OPTIONS
  • 24.3.4.1 Use as Unbound/Bound Aggregate
  • 24.3.4.2 Use as a Pozzolanic Admixture
  • 24.3.4.3 Use as Aggregate in Asphalt Mixtures
  • 24.4 CONCLUSIONS AND RECOMMENDATIONS
  • REFERENCES
  • 25 - COAL FLY ASH UTILIZATION FOR BORON MANAGEMENT IN SOILS, PLANTS, AND WATERS
  • 25.1 INTRODUCTION
  • 25.2 COAL FLY ASH
  • 25.3 COAL FLY ASH CHARACTERISTICS
  • 25.4 ELEMENTAL COMPOSITION OF COAL FLY ASH
  • 25.5 BORON
  • 25.6 IMPORTANCE OF BORON FOR LIFE ON EARTH
  • 25.7 IMPORTANCE OF BORON FOR PLANTS
  • 25.8 IMPORTANCE OF BORON FOR ANIMALS
  • 25.9 BORON IN THE ENVIRONMENT
  • 25.9.1 BORON SOURCES
  • 25.9.2 BORON IN SOILS
  • 25.9.3 BORON IN WATER
  • 25.10 BORON IN COAL FLY ASH
  • 25.11 BORON FORMS IN COAL FLY ASH
  • 25.12 USE OF COAL FLY ASH WITH RESPECT TO BORON
  • 25.12.1 AS SOIL AMELIORANT TO IMPROVE SOIL FERTILITY
  • 25.13 USE OF COAL FLY ASH FOR BORON REMOVAL FROM WATER AND WASTEWATER
  • 25.14 CONCLUSIONS
  • REFERENCES
  • 26 - THE CRYSTALLIZATION OF STRUVITE AND ITS ANALOG (K-STRUVITE) FROM WASTE STREAMS FOR NUTRIENT RECYCLING
  • 26.1 INTRODUCTION
  • 26.2 CHARACTERISTICS OF STRUVITE-TYPE COMPOUNDS
  • 26.2.1 CHEMICAL AND PHYSICAL PROPERTIES
  • 26.2.2 CRYSTALLOGRAPHIC PROPERTIES BY X-RAY DIFFRACTION ANALYSIS
  • 26.2.3 THERMAL ANALYSIS OF STRUVITE-TYPE COMPOUNDS
  • 26.3 KEY FACTORS INFLUENCING STRUVITE CRYSTALLIZATION
  • 26.3.1 SUPERSATURATION AND MOLAR RATIO
  • 26.3.2 PH
  • 26.3.3 TEMPERATURE
  • 26.3.4 COEXISTING FOREIGN IONS
  • 26.4 QUANTIFICATION OF STRUVITE IN PRECIPITATES
  • 26.5 K-STRUVITE PRODUCTION TECHNIQUES
  • 26.5.1 RECOVER K-STRUVITE FROM URINE
  • 26.5.2 RECOVERY OF K-STRUVITE FROM OTHER SOURCES
  • 26.5.3 MECHANOCHEMICAL ROUTE FOR PREPARING K-STRUVITE
  • 26.6 CHALLENGES AND FUTURE PROSPECTS
  • 26.6.1 HEAVY METAL CONTAMINATION PROBLEMS IN STRUVITE CRYSTALLIZATION
  • 26.6.2 FERTILIZER PROSPECTS
  • 26.6.3 ECONOMIC CONSIDERATIONS
  • 26.7 SUMMARY
  • Acknowledgments
  • REFERENCES
  • 27 - PHOSPHORUS RECOVERY FROM WASTES#
  • 27.1 INTRODUCTION
  • 27.2 IMPORTANCE OF PHOSPHORUS
  • 27.3 SOURCE OF PHOSPHORUS IN THE ENVIRONMENT
  • 27.4 NEGATIVE IMPACT OF PHOSPHORUS ON THE ENVIRONMENT
  • 27.5 WASTES AS A PHOSPHORUS SOURCE
  • 27.5.1 ANIMAL MANURES
  • 27.5.2 AGRICULTURAL EFFLUENTS
  • 27.5.3 INDUSTRIAL EFFLUENTS
  • 27.5.4 MUNICIPAL WASTEWATER
  • 27.5.5 BIOSOLIDS
  • 27.6 METHODS OF RECOVERING PHOSPHOROUS FROM WASTES
  • 27.6.1 ENHANCED BIOPROCESS PHOSPHORUS REMOVAL
  • 27.6.2 PRECIPITATION
  • 27.6.3 RECOVERY OF PHOSPHORUS AS MAGNESIUM AMMONIUM PHOSPHATE (STRUVITE)
  • 27.6.4 STRUVITE RECOVERY FROM EFFLUENT
  • 27.6.5 RECOVERY OF PHOSPHATE AS CALCIUM PHOSPHATE
  • 27.6.6 CALCIUM PHOSPHATE RECOVERY FROM EFFLUENTS
  • 27.6.7 PHOSPHORUS RECOVERY FROM SOLIDS
  • 27.6.7.1 Thermal Pretreatment
  • 27.6.8 PHOSPHORUS RECOVERY FROM RAW ANIMAL MANURE SOLIDS
  • 27.6.9 ADSORPTION AND ION EXCHANGE
  • 27.6.10 SOLAR EVAPORATION
  • 27.7 SUMMARY AND CONCLUSIONS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

102,28 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok