Python for Data Mining Quick Syntax Reference

 
 
Apress
  • erschienen am 19. Dezember 2018
  • |
  • XV, 260 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-1-4842-4113-4 (ISBN)
 
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis.
Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them.

The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
What You'll Learn
  • Install Python and choose a development environment
  • Understand the basic concepts of object-oriented programming
  • Import, open, and edit files
  • Review the differences between Python 2.x and 3.x
Who This Book Is For

Programmers new to Python's data mining packages or with experience in other languages, who want a quick guide to Pythonic tools and techniques.
1st ed.
  • Englisch
  • CA
  • |
  • USA
APRESS
  • 80
  • |
  • 80 s/w Abbildungen
  • 4,68 MB
978-1-4842-4113-4 (9781484241134)
10.1007/978-1-4842-4113-4
weitere Ausgaben werden ermittelt
Valentina Porcu is a computer geek with a passion for data mining and research, and a Ph.D in communication and complex systems. She has years of experience in teaching in universities in Italy, France and Morocco, and online, of course! She works as consultant in the field of data mining and machine learning and enjoys writing about new technologies and data mining. She spent the last 9 years working as freelancer and researcher in the field of social media analysis, benchmark analysis and web scraping for database building, in particular in the field of buzz analysis and sentiment analysis for universities, startups and web agencies across UK, France, US and Italy. Valentina is the founder of Datawiring, a popular Italian data science resource.
1. Getting Started2. Introductory Notions3. Basic Objects and Structures4. Functions5. Conditional Instructions and Writing Functions6. Other Basic Concepts7. Importing Files8. pandas9. SciPy and NumPy10. Matplotlib11. scikit-learn

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

26,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen