Advances in Bacterial Electron Transport Systems and Their Regulation

 
 
Elsevier Book Series (Verlag)
  • 1. Auflage
  • |
  • erschienen am 5. Mai 2016
  • |
  • 594 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-805239-6 (ISBN)
 

Advances in Microbial Physiology: Advances in Bacterial Electron Transport Systems and Their Regulation, the latest volume in the Advances in Microbial Physiology series, continues the long tradition of topical and important reviews in microbiology, with this latest volume focusing on the advances in bacterial electron transport systems and their regulation.


  • Contains contributions from leading authorities in the field of microbial physiology
  • Informs and updates on all the latest developments in the field
  • Presents a primary focus for this edition on the advances made in bacterial electron transport systems and their regulation


Professor Robert Poole is West Riding Professor of Microbiology at the University of Sheffield. He has >35 years' experience of bacterial physiology and bioenergetics, in particular O2-, CO- and NO-reactive proteins, and has published >300 papers (h=48, 2013). He was Chairman of the Plant and Microbial Sciences Committee of the UK Biotechnology and Biological Sciences Research Council and has held numerous grants from BBSRC, the Wellcome and Leverhulme Trusts and the EC. He coordinates an international SysMO systems biology consortium. He published pioneering studies of bacterial oxidases and globins and discovered the bacterial flavohaemoglobin gene (hmp) and its function in NO detoxification He recently published the first systems analyses of responses of bacteria to novel carbon monoxide-releasing molecules (CORMs) and is a world leader in NO, CO and CORM research.
0065-2911
  • Englisch
  • London
  • 28,56 MB
978-0-12-805239-6 (9780128052396)
0128052392 (0128052392)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Bacterial Electron Transport Systems and Their Regulation
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2)
  • 1. Introduction
  • 2. General Aspects of Respiration
  • 2.1. Electron Transport and Proton-Motive Force Generation
  • 2.2. Oxygen Respiration Under Hypoxic Conditions
  • 2.3. Anaerobic Respiration
  • 2.4. Electron Donation to the Respiratory Chain
  • 3. The Aerobic Respiratory Chain of S. coelicolor
  • 3.1. The Terminal Oxidases
  • 3.2. NADH Dehydrogenase 1 and 2
  • 3.3. Flavin-Based Electron-Donating Complexes
  • 4. Respiration with Nitrate
  • 4.1. Respiratory Nitrate Reductases
  • 4.2. Genes Whose Products Are Involved in Nitrate Reduction in S. coelicolor
  • 4.3. Phylogeny of Nar Enzymes in S. coelicolor
  • 4.4. Tissue-Specific Synthesis and Functionality of Nars in S. coelicolor
  • 4.5. Coupling of Nar Activity to Nitrate-Nitrite Transport
  • 4.6. Regulation of Nar Enzyme Synthesis
  • 4.7. Physiological Consequences of Nitrate Reduction for Streptomyces
  • 5. Respiratory Enzyme Complexes-An Outlook and Perspectives
  • Acknowledgements
  • References
  • Chapter Two: Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study
  • 1. Introduction
  • 2. General Characteristics of the Haloferax Genus
  • 3. Anaerobic Metabolism in the Haloferax Genus
  • 3.1. Denitrification
  • 3.2. Perchlorate and Chlorate Reduction
  • 3.3. Dimethyl Sulphoxide, Trimethylamine N-Oxide and Fumarate as Final Electron Acceptors
  • 4. Enzymes Involved in Anaerobic Metabolism in Haloferax Genus: Denitrification as Study of Case
  • 4.1. Respiratory Nitrate Reductases in Haloferax Genus
  • 4.2. Respiratory Nitrite Reductases in Haloferax Genus
  • 4.3. Nitric Oxide Reductases in Haloferax Genus
  • 4.4. Nitrous Oxide Reductases in Haloferax Genus
  • 5. Genes Coding for the Enzymes Sustaining Denitrification
  • 6. Potential Uses of the Denitrification Carried Out by Haloferax in Biotechnology
  • 6.1. Wastewater Treatments by Haloferax Members
  • 6.2. Biosensors Based on Denitrification Enzymes
  • 7. Conclusions and Future Perspectives
  • Acknowledgement
  • References
  • Chapter Three: Mechanisms of Bacterial Extracellular Electron Exchange
  • 1. Introduction
  • 2. Diversity of Microbe-Mineral Metabolism
  • 2.1. Biology of Iron-Metabolising Bacteria
  • 2.1.1. Iron-Oxidising Bacteria
  • 2.1.2. Mineral-Reducing Bacteria
  • 2.2. Model Iron Oxides Used for Measurement of Microbial Biochemistry
  • 3. Biological Electron Transport Across the Cell Envelope
  • 3.1. Extracellular Electron Transfer in Gram-Positive Bacteria and Archae
  • 3.2. The Porin-Cytochrome Complex as a Transmembrane Electron Conduit
  • 3.3. The Cyc2 Outer Membrane Fused Porin-Cytochrome
  • 3.4. Electron Transfer Through the Outer Membrane of Gram-Negative Bacteria
  • 4. Structures at the Interface of Microbe-Mineral Interaction
  • 4.1. Extracellular Electron Transfer Through Conductive Filaments
  • 4.2. Direct Contact: The Structures of the Outer Membrane Cytochromes of Shewanella spp.
  • 4.2.1. The Role of Shuttles in Shewanella Extracellular Electron Transfer
  • 5. Summary of Electron Transport Models Across the Outer Membrane
  • 5.1. The Extracellular Electron Transfer Systems of Neutrophilic Iron-Oxidising Organisms
  • 5.2. The Mechanism of Mineral Reduction in Geobacter sulfurreducens
  • 5.3. The Mechanism of Electron Transfer from the Cell Surface of Shewanella spp.
  • 6. Future Perspectives
  • Acknowledgements
  • References
  • Chapter Four: Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and Dcu...
  • 1. Transporters as Coregulators of Sensor Kinases
  • 1.1. ABC Transporters
  • 1.2. Extracytoplasmic Binding Proteins
  • 1.3. Secondary Transporters: UhpA-UhpB and C4-Dicarboxylate Two-Component Systems
  • 1.3.1. The Interplay Between Transporter UhpC and the UhpB Hexose-6-P Sensor Kinase
  • 1.3.2. C4-Dicarboxylate Sensor Kinases Are Negatively Regulated by Transporters DctA or DcuB
  • 2. Polar Localization of DcuS and of the DcuS/DctA Sensor Complex
  • 3. DcuS as Membrane-Bound Sensor Kinase for Transmembrane Signalling
  • 3.1. Stimulus Perception and Compaction of the Extracytoplasmic PASP Domain
  • 3.2. Transmembrane Signalling by DcuS: A Piston-Type Displacement of TM2
  • 3.2.1. Additional Modes for TM Signalling in DcuS?
  • 3.3. Signal Transfer from the Membrane (TM2) by PASC to the Kinase Domain
  • 4. The DctA/DcuS (or DcuB/DcuS) Sensor Complexes and Their Role for DcuS Function
  • 4.1. DctA (and DcuB) Form Permanent Sensor Complexes with DcuS
  • 4.2. DcuS as the Site for Sensing in the DctA/DcuS or DcuB/DcuS Sensor Complexes
  • 4.3. C4-Dicarboxylate-Dependent Induction by the DcuS Sensor Complexes: A Model for DctA/DcuS (or DcuB/DcuS) Function
  • 4.3.1. Function of DcuS in Signal Perception, Transmembrane Signalling and Control of the Kinase
  • 4.3.2. Role of the Transporters DctA or DcuB as Coregulators of DcuS
  • 4.4. Negative Autoregulation of DcuS Function by DctA Under C4-Dicarboxylate Limitation
  • Acknowledgements
  • References
  • Chapter Five: Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport
  • 1. Introduction
  • 2. A Survey of Different Roles of Iron-Containing Proteins in the Photosynthetic Process
  • 3. Control of Iron Homeostasis in Cyanobacteria
  • 4. Iron-Responsive Proteins and Photosystem Performance
  • 4.1. Plasticity of the Photosynthetic Electron Transport Chains to Adapt to Iron Availability
  • 4.2. Fitness of Photosynthetic Machinery Under Iron-Limited Environments: Advantage of isiA Gene
  • 4.3. isiB Encoding Flavodoxin Permits Efficient Electron Transport in Iron-Deficient Environments
  • 4.4. Roles idiABC Protecting Photosynthetic Machinery from Photooxidation
  • 4.5. Microcystin Is Synthesized as Consequence of Iron Starvation. Is Its Production Another Adaptative Response to Survi...
  • 5. Iron-Dependent Proteins Involved in Nitrogen Metabolism: Roles and Regulation
  • 6. Relationship Between Iron and Respiratory Electron Transport in Cyanobacteria
  • 7. Iron-Regulated RNAs Related to the Control of Cyanobacterial Electron Transport
  • 8. Insights into the Mechanisms of Genetic Regulation of Cyanobacterial Electron Transport Operated by FurA
  • 8.1. An Iron Sensing Mechanism Based on a Thiol Redox Switch in FurA from Anabaena sp. PCC 7120
  • 8.2. The Haem-FurA Interaction: A Potential Link Between Iron and Haem Metabolism in a Changing Redox Ambiance in Cyanobac...
  • Acknowledgements
  • References
  • Chapter Six: Bacterial Electron Transfer Chains Primed by Proteomics
  • 1. Introduction
  • 2. Methodology of Proteomics
  • 2.1. Introduction to Mass Spectrometry
  • 2.1.1. The Mass Spectrum
  • 2.1.2. The Ionisation Process
  • 2.1.3. Mass Analysers
  • 2.1.4. Peptide Sequencing: Tandem Mass Spectrometry
  • 2.1.5. Separation of Complex Samples: LC-MS/MS
  • 2.2. Protein Identification
  • 2.2.1. Peptide-Centric (Bottom-Up) Proteomics
  • 2.2.2. Protein Centric (Top-Down) Proteomics
  • 2.3. Protein Quantitation by Mass Spectrometry
  • 2.3.1. Protein Quantitation: Principles
  • 2.3.2. Label-Free and Stable Isotope-Labelling Quantitation Methods
  • 2.3.3. Untargeted and Targeted Approaches
  • 3. Bacterial Electron Transfer Chains and Their Regulation: Global Approaches
  • 3.1. 2DE-Based Methods and Shotgun Proteomics
  • 3.1.1. Methods Based on 2D IEF SDS-PAGE, the Classical Approach
  • 3.1.2. Shotgun Proteomics
  • 3.2. Membrane-Bound Systems
  • 3.2.1. Analysis of Membrane-Bound Proteins
  • 3.2.2. Membrane-Bound Protein Complexes
  • 3.3. Differential Expression
  • 4. Respiratory Protein Complexes in Assembly
  • 4.1. Structural Aspects of Respiratory Complexes
  • 4.1.1. Protein Purification
  • 4.1.2. Primary Structure Information
  • 4.1.3. On Track to Secondary, Tertiary and Quaternary Structures of Respiratory Complexes
  • 4.1.4. Protein-Lipid Interactions
  • 4.1.5. Membrane Protein Complexes Studied in Thin Air
  • 4.1.6. Putting Structural Information in a Timed Perspective
  • 4.2. Posttranslational Modifications
  • 4.2.1. Protein Phosphorylation
  • 4.2.2. Protein Acetylation
  • 4.2.3. Protein Methylation
  • 4.2.4. Oxidative Stress-Related Posttranslational Modifications
  • 5. Assemblages of Respiratory Protein Complexes
  • 5.1. Supercomplexes
  • 5.1.1. Mitochondrial Supercomplexes
  • 5.1.2. Bacterial Supercomplexes
  • 5.2. The Interactome
  • 5.2.1. Assembly of Bacterial Respiratory Complexes
  • 5.2.2. The Far from Complete Picture of Interaction Partners and Interaction Dynamics
  • 6. Perspectives
  • Acknowledgements
  • References
  • Chapter Seven: Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms
  • 1. Introduction
  • 2. N2O Metabolism in Nitrate-Ammonifying Bacteria
  • 2.1. Gammaproteobacteria
  • 2.1.1. Enzymes Involved in NO and N2O Metabolism
  • 2.1.2. Regulatory Proteins
  • 2.1.3. Nitrate Ammonification and Denitrification in Sh. loihica
  • 2.2. Epsilonproteobacteria
  • 2.2.1. Respiratory Reduction of Nitrate and Nitrite, Detoxification of NO and the Concomitant Generation of N2O
  • 2.2.2. Growth by N2O Respiration and Reduction of N2O by the Atypical Cytochrome c N2OR System
  • 2.2.3. Transcriptional Regulation of the W. succinogenes nos Gene Cluster
  • 2.3. Nitrate-Ammonifying Bacillus Species
  • 3. N2O Metabolism in Denitrifying Bacteria
  • 3.1. Nitric Oxide Reductases
  • 3.2. Nitrous Oxide Reductase
  • 3.3. Regulators
  • 3.3.1. Oxygen Response
  • 3.3.2. Nitrate/Nitrite Response
  • 3.3.3. NO Response
  • 3.3.4. Redox Response
  • 3.3.5. Copper and pH as Emerging Regulatory Factors
  • 4. B. japonicum as a Model of Legume-Associated Rhizobial Denitrifiers
  • 4.1. Regulation of B. japonicum Denitrification
  • 4.2. NO and N2O Metabolism in Soybean Nodules
  • 4.3. A New System Involved in NO and N2O Metabolism in B. japonicum
  • 5. NO and N2O Metabolism in Other Rhizobia-Legume Symbiosis
  • 5.1. E. meliloti-Medicago truncatula
  • 5.1.1. NO in M. truncatula Nodules
  • 5.2. R. etli-Phaseolus vulgaris
  • 6. Conclusions
  • Acknowledgements
  • References
  • Chapter Eight: The Model [NiFe]-Hydrogenases of Escherichia coli
  • 1. Introduction
  • 2. [NiFe]-Hydrogenase-1: An O2-Tolerant Paradigm
  • 2.1. The Mechanism of O2-Tolerance Displayed by Hyd-1
  • 2.2. A General Mechanism for Hydrogen Oxidation by [NiFe] Hydrogenases Based on Analysis of Hyd-1 Function
  • 3. [NiFe]-Hydrogenase-2: A Bidirectional Redox Valve
  • 3.1. Generation of a Transmembrane Electrochemical Gradient by Hyd-2
  • 4. [NiFe]-Hydrogenase-3: A Central Component of Formate Hydrogenlyase
  • 4.1. Hydrogen-Linked Formate Dehydrogenase
  • 4.2. On the Role of HydN
  • 4.3. Engineering Hyd-3 for Biohydrogen Production
  • 5. [NiFe]-Hydrogenase-4: Fossil or Functional?
  • 6. Biosynthesis of Hydrogenases
  • 6.1. Biosynthesis of the [NiFe] Cofactor
  • 6.2. Biosynthesis of [Fe-S] Clusters
  • 6.3. Biosynthesis of Cytochromes b
  • 6.4. The Twin-Arginine Translocation Pathway
  • 6.5. Accessory Proteins Specific to Hyd-1
  • 6.6. Accessory Proteins Specific to Hyd-2
  • 6.7. Accessory Proteins Specific to Hyd-3
  • 6.8. Accessory Proteins Missing for Hyd-4
  • 7. Concluding Remarks
  • Acknowledgements
  • References
  • Author Index
  • Subject Index
  • Color Plate
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

152,32 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok