Mushroom Biotechnology

Developments and Applications
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 14. Oktober 2015
  • |
  • 242 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-802804-9 (ISBN)
 

Mushroom Biotechnology takes a critical approach to mushroom biology for food applications. This resource encompasses the latest scientific research in mushroom technology making it useful to anyone interested mushroom research as it relates not only to agriculture and the food industry, but also those who wish to learn from this type of sustainable technology, and its potential applications to other industries. Written by experts in the field this reference represents the benefits of cultivating mushrooms to improve and sustain a healthy and natural food supply.


  • Presents both theoretical and practical tools to apply mushroom biotechnology to further research to improve value added products
  • Includes biotechnological procedures used for growing and developing many species of edible and medicinal mushrooms useful to food production and human health
  • Offers the latest results of scientific research in the field of mushroom biotechnology in one resource


Marian Petre has over 30 years of research experience in microbial food and environmental biotechnology. He is a committee chair, invited speaker at conferences, and project leader for over 20 national research projects. Marian Petre has received several medals in research innovations for his work.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 9,58 MB
978-0-12-802804-9 (9780128028049)
0128028041 (0128028041)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Mushroom Biotechnology
  • Copyright Page
  • Dedication
  • Contents
  • Editor Biography
  • List of Contributors
  • Foreword
  • Preface
  • 1 Biotechnology of Mushroom Growth Through Submerged Cultivation
  • 1.1 Introduction
  • 1.2 The Concept of SCM
  • 1.3 Methods and Techniques used for SCM
  • 1.4 Biotechnology for Submerged Cultivation of Pleurotus ostreatus and Lentinula edodes
  • 1.5 Physical and Chemical Factors That Influence the SCM
  • 1.5.1 Chemical Factors
  • 1.5.1.1 Carbon sources
  • 1.5.1.2 Nitrogen sources
  • 1.5.1.3 pH index
  • 1.5.1.4 Oxygen intake
  • 1.5.2 Physical Factors That Influence the SCM
  • 1.5.2.1 Temperature
  • 1.5.2.2 Fragmentation degree of cultivation substrates
  • 1.5.2.3 Stirring rate
  • 1.6 The Biological Factors That Influence the SCM
  • 1.7 New Biotechnology for Submerged Co-Cultivation of Mushroom Species
  • 1.8 Concluding Remarks
  • References
  • 2 Biotechnological Recycling of Fruit Tree Wastes by Solid-State Cultivation of Mushrooms
  • 2.1 Introduction
  • 2.2 The Solid-State Cultivation of Mushrooms (SSCM) on Lignocellulosic Wastes of Fruit Trees
  • 2.2.1 Preparation of Substrates for SSCM
  • 2.2.2 Main Stages of SSCM
  • 2.2.3 Chemical Analysis of the Collected Mushrooms
  • 2.3 Conclusions
  • Acknowledgments
  • References
  • 3 Controlled Cultivation of Mushrooms on Winery and Vineyard Wastes
  • 3.1 Introduction
  • 3.2 Solid-State Cultivation of Mushrooms (SSCM) on Winery and Vineyard Wastes
  • 3.3 Submerged Cultivation of Mushrooms (SCM) in Liquid Media Containing Winery Wastes
  • 3.4 Conclusions
  • References
  • 4 Virtual Robotic Prototype for Safe and Efficient Cultivation of Mushrooms
  • 4.1 Introduction
  • 4.2 Conventional Technologies Used in Mushroom Cultivation
  • 4.3 Conceptual Model of Robotic Cultivation and Integrated Processing of Mushrooms
  • 4.4 Modular Robotic Prototype for Continuous Cultivation and Integrated Processing of Mushrooms
  • 4.4.1 General Structure of Modular Robotic System for Growing Mushrooms
  • 4.4.2 Specific Technological Operations of Modular Robotic Prototype
  • 4.4.3 The Robot of Inoculation
  • 4.4.4 The Robotic Harvesting Cell
  • 4.5 Conclusions
  • References
  • 5 Growing Agaricus bisporus as a Contribution to Sustainable Agricultural Development
  • 5.1 Introduction
  • 5.2 The Improvement of Agro-Waste Valorization
  • 5.2.1 The Use of Local Resources
  • 5.2.2 From Outdoor to Indoor Composting
  • 5.2.3 Reuse of the Same Compost Several Times
  • 5.2.4 A Cultivation Substrate Without Composting?
  • 5.3 The Preservation and Management of Biological Diversity
  • 5.3.1 The Loss of Genetic Diversity in Cultivated Lines
  • 5.3.2 The Native Reservoir of Biodiversity
  • 5.3.3 Genotypic and Phenotypic Richness of Germplasms
  • 5.4 Genetic Progress for Sustainable Growing of Agaricus bisporus
  • 5.4.1 Generating Variability by Outcrossing
  • 5.4.2 Modern Genetics Applied to A. bisporus
  • 5.4.3 The Selection of Strains Able to Fruit at High Temperature
  • 5.4.4 Selection of Strains with Health-Promoting Compounds and Low Safety Risk
  • 5.4.5 Valorization of Genetic Progress for Sustainable Growing of Agaricus bisporus
  • 5.5 Conclusions
  • References
  • 6 New Prospects in Pathogen Control of Button Mushroom Cultures
  • 6.1 Introduction
  • 6.2 Major Pathogens Affecting Agaricus bisporus and Their Prophylaxis
  • 6.2.1 Antagonists of A. bisporus: Weed Molds and Trichoderma spp.
  • 6.2.2 Dry Bubble Disease
  • 6.2.3 The Bacterial Brown Blotch Pathogens
  • 6.3 Strains of Agaricus bisporus Resistant to Pathogens
  • 6.3.1 Genetic Resources for Resistance to Mushroom Pathogens
  • 6.3.1.1 Resistance to Trichoderma aggressivum
  • 6.3.1.2 Resistance to Lecanicillium fungicola
  • 6.3.1.3 Resistance to Pseudomonas tolaasii
  • 6.3.2 Breeding for Resistance to Pathogens
  • 6.4 Biological Control Agents
  • 6.4.1 Biocontrol of Trichoderma aggressivum with Bacteria
  • 6.4.2 Biocontrol of Pseudomonas tolaasii with Phages and Antagonistic Bacteria
  • 6.4.3 No Biocontrol of Lecanicillium fungicola
  • 6.5 Use of Environmentally Friendly Biomolecules
  • 6.5.1 Essential Oils
  • 6.5.2 Compost Tea
  • 6.5.3 White Line-Inducing Principle
  • 6.6 Conclusions
  • References
  • 7 Sclerotium-Forming Mushrooms as an Emerging Source of Medicinals: Current Perspectives
  • 7.1 Introduction
  • 7.2 The Importance of Mushroom Sclerotia
  • 7.2.1 Food
  • 7.2.2 Folk Medicine
  • 7.2.3 Bioactive Components from SFM
  • 7.2.3.1 Low-molecular-weight compounds
  • 7.2.3.2 High-molecular-weight compounds
  • 7.3 Scientific Validation of the Medicinal Properties of SFM
  • 7.3.1 Antitumor Activity
  • 7.3.2 Immunomodulatory Activity
  • 7.3.3 Antioxidative Activity
  • 7.3.4 Anti-Inflammatory Activity
  • 7.3.5 Antimicrobial Activity
  • 7.3.6 Antihypertensive Activity and Related Cardiovascular Complications
  • 7.3.7 Antidiabetic Activity
  • 7.3.8 Diuretic Activity
  • 7.3.9 Neuritogenic Activity
  • 7.4 Perspectives on Mycelial Biomass as a Potential Substitute for Sclerotia and Fruiting Bodies
  • 7.4.1 Cultivation
  • 7.4.2 Chemical Constituents
  • 7.4.3 Comparative Biological Activities
  • 7.5 Future Perspectives
  • 7.6 Conclusions
  • Acknowledgment
  • References
  • 8 Medicinal Mushrooms with Anti-Phytopathogenic and Insecticidal Properties
  • 8.1 Introduction
  • 8.2 Antibacterial Metabolites
  • 8.3 Antifungal and Herbicidal Metabolites
  • 8.4 Antiviral Metabolites
  • 8.5 Insecticidal and Nematocidal Metabolites
  • 8.6 Conclusions
  • References
  • 9 Cultivation of Medicinal Fungi in Bioreactors
  • 9.1 Introduction
  • 9.2 Cultivation Technologies
  • 9.2.1 Overview of Cultivation Technologies
  • 9.2.2 Production of Biomass in Bioreactors
  • 9.2.3 Submerged Bioprocessing
  • 9.2.4 Solid-State Bioprocessing
  • 9.3 Cultivation of Medicinal Mushrooms in Bioreactors
  • 9.3.1 Submerged Cultivation of G. lucidum
  • 9.3.1.1 Inoculum preparation
  • 9.3.1.2 The effect of medium initial pH
  • 9.3.1.3 The influence of aeration and agitation
  • 9.3.1.4 The influence of substrate composition
  • 9.3.1.5 Influences of carbon and nitrogen sources, and C/N ratio
  • 9.3.1.6 The effects of nitrogen sources and concentrations
  • 9.3.1.7 The influence of macro- and microelements
  • 9.3.1.8 The effects of plant oils and fatty acids
  • 9.3.1.9 The effect of polymer additives
  • 9.3.1.10 Ganoderma lucidum cultivation in an STB
  • 9.3.1.11 Ganoderma lucidum cultivation in airlift bioreactor
  • 9.3.2 Solid-State Cultivation of G. lucidum
  • 9.3.2.1 The influence of substrate composition
  • 9.3.3 Submerged Cultivation of G. frondosa
  • 9.3.3.1 Inoculum
  • 9.3.3.2 The effect of initial pH
  • 9.3.3.3 The effects of carbon and nitrogen sources
  • 9.3.3.4 The effects of plant oils and surfactants
  • 9.3.3.5 The effects of oxygen concentration
  • 9.3.3.6 Grifola frondosa cultivation in an STB
  • 9.3.3.7 Grifola frondosa cultivation in airlift bioreactor
  • 9.3.4 Solid-State Cultivation of G. frondosa
  • 9.3.4.1 Substrates
  • 9.3.5 Cultivation of T. versicolor
  • 9.3.5.1 Submerged cultivation of T. versicolor
  • 9.3.5.2 The effects of carbon sources on biomass and EPS
  • 9.3.5.3 The effects of nitrogen and amino acid sources on biomass and EPS
  • 9.3.6 Solid-State Cultivation of T. versicolor
  • 9.3.7 Submerged Cultivation of H. erinaceus
  • 9.3.8 Solid-State Cultivation of H. erinaceus
  • 9.3.9 Submerged Cultivation of C. militaris
  • 9.3.10 Solid-State Cultivation of C. militaris
  • 9.3.11 Cultivation of Other Medicinal Mushroom Species in Bioreactors
  • 9.4 Conclusions
  • References
  • 10 Use of Aspergillus niger Extracts Obtained by Solid-State Fermentation
  • 10.1 Agro-Food Industrial Wastes as Raw Materials
  • 10.2 Lignocellulosic Composition of Agroindustrial Wastes
  • 10.3 Enzymes Involved in Lignocellulose Degradation
  • 10.4 Fungal SSF
  • 10.5 Aspergillus niger for the Production of Xylanases
  • 10.6 Corn Cob as a Carbon Source for Xylanase Production by A. niger
  • 10.7 Industrial Application of Fungal Xylanases
  • 10.8 Corn Cob as Substrate for the Enzymatic Production of Xylooligosaccharides and Xylose
  • 10.9 Conclusions
  • References
  • 11 Identification and Application of Volvariella volvacea Mating Type Genes to Mushroom Breeding
  • 11.1 Introduction
  • 11.2 The General Features of the V. volvacea Genome
  • 11.3 Mating Type Loci and Mating Type Genes of V. volvacea
  • 11.4 Setting the Molecular Marker-Assisted Breeding Techniques of V. volvacea
  • 11.5 The Separation of Single Spore Isolates
  • 11.6 Cloning the Mating Type Gene
  • 11.7 Designing the PCR Primers for Amplifying the Mating Type Genes
  • 11.8 The Marker-Assisted Identification of Homokaryons
  • 11.9 Cross-Breeding Between Pairs of Homokaryons
  • 11.10 Marker-Assisted Identification of Hybrids
  • 11.11 Cultivation Experiments
  • 11.12 Marker-Assisted Identification of Hybrid Sporophores
  • References
  • 12 Biotechnological Use of Fungi for the Degradation of Recalcitrant Agro-pesticides
  • 12.1 Introduction
  • 12.2 Bioremediation of Xenobiotics
  • 12.2.1 Phytoremediation
  • 12.2.2 Bioremediation by Fungi
  • 12.2.2.1 Endosulfan biodegradation by fungi
  • 12.2.2.2 Chlorothalonil biodegradation by fungi
  • 12.2.2.3 Biodegradation of paraquat
  • 12.3 Perspectives
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

85,62 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok