Physics and Mechanics of Amorphous Polymers

 
 
Routledge (Verlag)
  • erschienen am 27. April 2018
  • |
  • 324 Seiten
 
E-Book | ePUB ohne DRM | Systemvoraussetzungen
978-1-351-42451-6 (ISBN)
 
Topics covered in this text include: structural aspects of polymers; molecular mobility in amorphous solid polymers; non-elastic deformation of solid amorphous polymers; mechanical experiments; interpretation of results; physical ageing of amorphous polymers; and glass transition.
  • Englisch
  • Boca Raton
  • |
  • USA
Taylor & Francis Ltd
  • Für höhere Schule und Studium
  • 6,84 MB
978-1-351-42451-6 (9781351424516)
weitere Ausgaben werden ermittelt
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Foreword
  • List of Symbols
  • Table of Contents
  • Chapter 1: Structural Aspect of Polymers
  • 1. Structure of Macromolecules
  • 1.1 Interatomic Bonds
  • 1.2 Configurations in Macromolecular Chains
  • 1.3 Conformation of Macromolecules
  • 2. Polymers in Solution
  • 2.1 Ideal Chain
  • 2.2 Unperturbed Real Chain
  • 2.3 Real Chain Perturbed by Excluded Volume Effects
  • 3. Polymers in Molten State and in Solid Stale
  • 3.1 Arrangement of MacrOmolecules
  • 3.2 Intermolecular Interaction: Cohesion in Solid Polymers
  • 3.3 Concept of Physical Defects in Solid Amorphous Polymers
  • 3.3.1 Concept of point defects
  • 3.3.2 Linear defects
  • 4. Conclusion
  • Further Reading
  • Book
  • Articles
  • Theses
  • Chapter 2: Molecular Mobility in Amorphous Solid Polymers
  • 1. Introduction
  • 2. Molecular Mobility in Supercooled Liquids
  • 2.1 Free Volume Theory
  • 2.2 Fluctuations of Entropy
  • 2.3 Comparison of the two Theories: Discussion
  • 3. Molecular Mobility in Glassy Solids
  • 3.1 Configurational State of Glasses
  • 3.2 Molecular Mobility: from Liquid to Glassy Solid
  • 3.3 Concept of Defect and Molecular Mobility
  • 3.4 Molecular Mobility and Hierarchical Correlation Effects
  • 3.5 Discussion and Comparison of Various Models
  • 4. Amorphous Polymers and Molecular Diffusion
  • 5. Discussion and Conclusion
  • 5.1 Local Molecular Motions
  • 5.2 Glass Transition
  • Further Reading
  • Books
  • Articles
  • Thesis
  • Chapter 3: Non-elastic Deformation of Solid Amorphous Polymers
  • 1. General Aspects
  • 2. Experimental Results
  • 2.1 Large Deformations
  • 2.1.1 Plastic deformation and molecular orientation
  • 2.1.2 Law of behaviour
  • 2.2 Small Deformations: Mechanical Spectroscopy, Micromechanical Tests
  • 2.1.1 Microflow
  • 2.2.2 Mechanical spectroscopy
  • 2.2.3 Stress relaxation
  • 2.2.4 Thermostimulated creep (TSC)
  • 3. Molecular Aspects
  • 3.1 Plastic Deformation and Microstructural Change
  • 3.2 Plastic Deformation and Internal Stress
  • 3.3 Nature of Barriers
  • Further Reading
  • Books
  • Articles
  • Theses
  • Chapter 4: Theoretical Approach of Non-elastic Deformation of Solid Amorphous Polymers
  • 1. Introduction: General Hypotheses
  • 2. Theoretical Analysis
  • 2.1 ß Relaxation
  • 2.2 Sheared Microdomains
  • 2.3 Calculation of Deformation
  • 2.3.1 Case of high temperatures
  • 2.3.2 Case of low temperatures
  • Further Reading
  • Books
  • Articles
  • Theses
  • Chapter 5: Mechanical Experiments: Interpretation of Results
  • 1. Flow
  • 1.1 High Temperature and Large Deformation
  • 1.2 High Stress and Low Temperature
  • 1.3 Small Deformation and Low Temperature
  • 1.4 Recovery of Deformation
  • 2. Applied Rate of Deformation (Compression, Shear and Tensile Tests)
  • 2.1 General Considerations
  • 2.2 Numerical Simulation
  • 2.3 Comparison with Thermodynamic Analysis of Plasticity
  • 2.4 Conclusion
  • 3. Stress Relaxation
  • 4. Mechanical Spectrometry
  • 4.1 Expression of frequential Compliance
  • 4.2 Entropie Elasticity and Chain Flow
  • 4.3 Universal Formalism
  • 4.4 Application to Amorphous Polymers
  • 4.4.1 ß relaxation
  • 4.4.2 a relaxation: isothermal behaviour (metastable equilibrium)
  • 4.4.3 a relaxation: behaviour at variable temperature
  • 4.5 Conclusion
  • 5. Thermostimulated Creep
  • 5.1 Distribution of Characteristic Times
  • 5.2 Phenomenon of Compensation
  • 5.3 Discussion and Conclusions
  • 6. Special Aspects of Mechanical Behaviour of Amorphous Polymers
  • 6.1 Peak of Stress
  • 6.2 Kohlrausch Effect
  • 6.3 Plastic Deformation and Dynamic Modulus
  • FURTHER READING
  • Articles
  • Theses
  • Chapter 6: Physical Aging of Amorphous Polymers
  • 1. Experimental Data
  • 1.1 Mechanical Properties
  • 1.2 Thermodynamic Properties
  • 1.3 Other Properties
  • 1.4 Conclusion
  • 2. Thermodynamic Analysis
  • 2.1 Thermodynamic Aspect
  • 2.2 Phenomenological Theories
  • 2.3 Thermodynamics of Irreversible Processes
  • 3. Physical Analysis of Structural Relaxation
  • 3.1 General Presentation
  • 3.2 Molecular Aspects of Physical Aging
  • 4. Numerical Simulation
  • 5. Discussion and Conclusion
  • Further Reading
  • Book
  • Articles
  • Theses
  • Chapter 7: Glass Transition
  • 1. Experimental Aspect
  • 2. Theories of Glass Transition
  • 2.1 Free Volume Theory
  • 2.2 Theories Involving the Concept of 'Thermodynamic Frustration'
  • 2.3 Glass Transition and Phenomenon of Percolation
  • 2.4 Molecular Dynamics and Glass Transition
  • 3. Physical Bases for a New Approach to Glass Transition
  • 3.1 Recapitulation of Concepts
  • 3.2 Nature of Glass Transition
  • 3.3. Measurement of Tg: Comparison of Theories and Principles of Main Experimental Methods
  • 3.3.1 Calorimetric measurements
  • 3.3.2 Dilatometrie measurements
  • 3.3.3 Thermomechanical properties
  • 4. Discussion and Conclusion
  • 4.1 Entropy of Glassy Systems: Kauzmann's Paradox
  • 4.2 Glassy State and Hypersurface of Configuration
  • 4.3 Glass Transition and Phenomenon of Percolation
  • 4.4 Molecular Dynamics, Mode Coupling and Glass Transition
  • Further Reading
  • Books
  • Articles
  • Theses
  • Conclusion: Should there be one?
  • 1. Summary of the Fundamental Points
  • 2. Concepts to Accept (?) or Reject
  • 2.1 Free Volume
  • 2.2 VFT Law, WLF Treatment and Kauzmann Paradox
  • 2.3 Principal a Relaxation and Glass Transition
  • 2.4 True Modulus and Experimental Modulus
  • 2.5 Glass Transition and the Theories of Mode Coupling
  • 3. Problems and Scope of Extension
  • Appendixes
  • A1: Simulation of Liquid-Glass Cooling: Calculation of Properties from Thermal History
  • A2: Simulation of the Response (Deformation) for Various Mechanical Applied Stresses
Dewey Decimal Classfication (DDC)

Dateiformat: EPUB
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie eine Lese-Software, die das Dateiformat EPUB verarbeiten kann: z.B. Adobe Digital Editions oder FBReader - beide kostenlos (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "glatten" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

47,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen