Fundamentals of Terahertz Devices and Applications

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 6. Juli 2021
  • |
  • 576 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-46072-5 (ISBN)
 
An authoritative and comprehensive guide to the devices and applications of Terahertz technology

Terahertz (THz) technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. Fundamentals of Terahertz Devices and Applications offers a comprehensive review of the devices and applications of Terahertz technology. With contributions from a range of experts on the topic, this book contains in a single volume an inclusive review of THz devices for signal generation, detection and treatment.

Fundamentals of Terahertz Devices and Applications offers an exploration and addresses key categories and aspects of Terahertz Technology such as: sources, detectors, transmission, electronic considerations and applications, optical (photonic) considerations and applications. Worked examples based on the contributors extensive experience highlight the chapter material presented. The text is designed for use by novices and professionals who want a better understanding of device operation and use, and is suitable for instructional purposes This important book:

* Offers the most relevant up-to-date research information and insight into the future developments in the technology
* Addresses a wide-range of categories and aspects of Terahertz technology
* Includes material to support courses on Terahertz Technology and more
* Contains illustrative worked examples

Written for researchers, students, and professional engineers, Fundamentals of Terahertz Devices and Applications offers an in-depth exploration of the topic that is designed for both novices and professionals and can be adopted for instructional purposes.
1. Auflage
  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 134,24 MB
978-1-119-46072-5 (9781119460725)
weitere Ausgaben werden ermittelt
Dimitris Pavlidis is a Research Professor at Florida International University. He has been Professor of Electrical Engineering and Computer Science at the University of Michigan (UofM) from 1986 to 2004 and a Founding Member of UofM?s first of its kind NASA THz Center in 1988. He served as Program Director in Electronics, Photonics and Magnetic Devices (EPMD) at the National Science Foundation. He received the decoration of "Palmes Academiques" in the order of Chevalier by the French Ministry of Education and Distinguished Educator Award of the IEEE/MTT-S and is an IEEE Life Fellow.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • About the Editor
  • List of Contributors
  • About the Companion Website
  • Chapter 1 Introduction to THz Technologies
  • Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies
  • 2.1 Introduction
  • 2.2 Elliptical Lens Antennas
  • 2.2.1 Elliptical Lens Synthesis
  • 2.2.2 Radiation of Elliptical Lenses
  • 2.2.2.1 Transmission Function T(Q)
  • 2.2.2.2 Spreading Factor S(Q)
  • 2.2.2.3 Equivalent Current Distribution and Far-field Calculation
  • 2.2.2.4 Lens Reflection Efficiency
  • 2.3 Extended Semi-hemispherical Lens Antennas
  • 2.3.1 Radiation of Extended Semi-hemispherical Lenses
  • 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds
  • 2.4.1 Analysis of the Leaky-wave Propagation Constant
  • 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium
  • 2.4.3 Shallow-lens Geometry Optimization
  • 2.5 Fly-eye Antenna Array
  • 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies
  • 2.5.1.1 Fabrication of Silicon Lenses Using DRIE
  • 2.5.1.2 Surface Accuracy
  • 2.5.2 Examples of Fabricated Antennas
  • Exercises
  • Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle
  • Exercise 2
  • Exercise 3
  • References
  • Chapter 3 Photoconductive THz Sources Driven at 1550 nm
  • 3.1 Introduction
  • 3.1.1 Overview of THz Photoconductive Sources
  • 3.1.2 Lasers and Fiber Optics
  • 3.2 1550-nm THz Photoconductive Sources
  • 3.2.1 Epitaxial Materials
  • 3.2.1.1 Bandgap Engineering
  • 3.2.1.2 Low-Temperature Growth
  • 3.2.2 Device Types and Modes of Operation
  • 3.2.3 Analysis of THz Photoconductive Sources
  • 3.2.3.1 PC-Switch Analysis
  • 3.2.3.2 Photomixer Analysis
  • 3.2.4 Practical Issues
  • 3.2.4.1 Contact Effects
  • 3.2.4.2 Thermal Effects
  • 3.2.4.3 Circuit Limitations
  • 3.3 THz Metrology
  • 3.3.1 Power Measurements
  • 3.3.1.1 A Traceable Power Sensor
  • 3.3.1.2 Exemplary THz Power Measurement Exercise
  • 3.3.1.3 Other Sources of Error
  • 3.3.2 Frequency Metrology
  • 3.4 THz Antenna Coupling
  • 3.4.1 Fundamental Principles
  • 3.4.2 Planar Antennas on Dielectric Substrates
  • 3.4.2.1 Input Impedance
  • 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna)
  • 3.4.2.3 G/T or Aeff/T
  • 3.4.3 Estimation of Power Coupling Factor
  • 3.4.4 Exemplary THz Planar Antennas
  • 3.4.4.1 Resonant Antennas
  • 3.4.4.2 Quick Survey of Self-complementary Antennas
  • 3.5 State of the Art in 1550-nm Photoconductive Sources
  • 3.5.1 1550-nm MSM Photoconductive Switches
  • 3.5.1.1 Material and Device Design
  • 3.5.1.2 THz Performance
  • 3.5.2 1550-nm Photodiode CW (Photomixer) Sources
  • 3.5.2.1 Material and Device Design
  • 3.5.2.2 THz Performance
  • 3.6 Alternative 1550-nm THz Photoconductive Sources
  • 3.6.1 Fe-Doped InGaAs
  • 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity
  • 3.7 System Applications
  • 3.7.1 Comparison Between Pulsed and CW THz Systems
  • 3.7.1.1 Device Aspects
  • 3.7.1.2 Systems Aspects
  • 3.7.2 Wireless Communications
  • 3.7.3 THz Spectroscopy
  • 3.7.3.1 Time vs Frequency Domain Systems
  • 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation
  • Exercises (1-4)
  • Exercises (5-8) THz Interaction with Matter
  • Exercises (9-12) Antennas, Links, and Beams
  • Exercises (13-15) Planar Antennas
  • Exercises (16-19) Device Noise, System Noise, and Dynamic Range
  • Exercises (20-22) Ultrafast Photoconductivity and Photodiodes
  • Explanatory Notes (see superscripts in text)
  • References
  • Chapter 4 THz Photomixers
  • 4.1 Introduction
  • 4.2 Photomixing Basics
  • 4.2.1 Photomixing Principle
  • 4.2.2 Historical Background
  • 4.3 Modeling THz Photomixers
  • 4.3.1 Photoconductors
  • 4.3.1.1 Photocurrent Generation
  • 4.3.1.2 Electrical Model
  • 4.3.1.3 Efficiency and Maximum Power
  • 4.3.2 Photodiode
  • 4.3.2.1 PIN photodiodes
  • 4.3.2.2 Uni-Traveling-Carrier Photodiodes
  • 4.3.2.3 Photocurrent Generation
  • 4.3.2.4 Electrical Model and Output Power
  • 4.3.3 Frequency Down-conversion Using Photomixers
  • 4.3.3.1 Electrical Model: Conversion Loss
  • 4.4 Standard Photomixing Devices
  • 4.4.1 Planar Photoconductors
  • 4.4.1.1 Intrinsic Limitation
  • 4.4.2 UTC Photodiodes
  • 4.4.2.1 Backside Illuminated UTC Photodiodes
  • 4.4.2.2 Waveguide-fed UTC Photodiodes
  • 4.5 Optical Cavity Based Photomixers
  • 4.5.1 LT-GaAs Photoconductors
  • 4.5.1.1 Optical Modeling
  • 4.5.1.2 Experimental Validation
  • 4.5.2 UTC Photodiodes
  • 4.5.2.1 Nano Grid Top Contact Electrodes
  • 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes
  • 4.5.2.3 Photoresponse Measurement
  • 4.5.2.4 THz Power Generation by Photomixing
  • 4.6 THz Antennas
  • 4.6.1 Planar Antennas
  • 4.6.2 Micromachined Antennas
  • 4.7 Characterization of Photomixing Devices
  • 4.7.1 On Wafer Characterization
  • 4.7.2 Free Space Characterization
  • Exercises
  • Exercise A. Photodetector Theory
  • Exercise B. Photomixing Model
  • 1. Ultrafast Photoconductor
  • 2. UTC Photodiode
  • Exercise C. Antennas
  • References
  • Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices
  • 5.1 Introduction
  • 5.2 Photoconductive Antennas
  • 5.2.1 Photoconductors for THz Operation
  • 5.2.2 Photoconductive THz Emitters
  • 5.2.2.1 Pulsed THz Emitters
  • 5.2.2.2 Continuous-wave THz Emitters
  • 5.2.3 Photoconductive THz Detectors
  • 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices
  • 5.2.4.1 Choice of Photoconductor
  • 5.2.4.2 Choice of Antenna
  • 5.3 Plasmonics-enhanced Photoconductive Antennas
  • 5.3.1 Fundamentals of Plasmonics
  • 5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices
  • 5.3.2.1 Principles of Plasmonic Enhancement
  • 5.3.2.2 Design Considerations for Plasmonic Nanostructures
  • 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices
  • 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators
  • 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes
  • 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays
  • 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities
  • 5.4 Conclusion and Outlook
  • Exercises
  • References
  • Chapter 6 Terahertz Quantum Cascade Lasers
  • 6.1 Introduction
  • 6.2 Fundamentals of Intersubband Transitions
  • 6.3 Active Material Design
  • 6.4 Optical Waveguides and Cavities
  • 6.5 State-of-the-Art Performance and Limitations
  • 6.6 Novel Materials Systems
  • 6.6.1 III-Nitride Quantum Wells
  • 6.6.2 SiGe Quantum Wells
  • 6.7 Conclusion
  • Acknowledgments
  • Exercises
  • References
  • Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology
  • 7.1 Graphene-Based THz Devices
  • 7.1.1 THz Properties of Graphene
  • 7.1.2 How to Simulate and Model Graphene?
  • 7.1.3 Terahertz Device Applications of Graphene
  • 7.1.3.1 Modulators
  • 7.1.3.2 Active Filters
  • 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials
  • 7.2 TMD Based THz Devices
  • 7.3 Applications
  • Exercises
  • Exercise 1 Computation of the Optical Conductivity of Graphene
  • Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface
  • Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems
  • Exercise 4 A Condition for Perfect Absorption
  • Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays
  • Exercise 6 Electron Plasma Waves in Gated Graphene
  • Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces
  • Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces
  • References
  • Chapter 8 THz Plasma Field Effect Transistor Detectors
  • 8.1 Introduction
  • 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations
  • 8.2.1 Dispersion of Plasma Waves in FETs
  • 8.2.2 THz Detection by an FET
  • 8.2.2.1 Resonant Detection
  • 8.2.2.2 Broadband Detection
  • 8.2.2.3 Enhancement by DC Drain Current
  • 8.3 THz Detectors Based on Silicon FETs
  • 8.4 Terahertz Detection by Graphene Plasmonic FETs
  • 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors
  • 8.6 Diamond Plasmonic THz Detectors
  • 8.7 Conclusion
  • Exercises
  • Exercises 1-2
  • Exercises 3-10
  • Exercises 11-13
  • References
  • Chapter 9 Signal Generation by Diode Frequency Multiplication
  • 9.1 Introduction
  • 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers
  • 9.3 A Practical Approach to the Design of Frequency Multipliers
  • 9.3.1 Frequency Multiplier Versus Comb Generator
  • 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance
  • 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level
  • 9.3.4 Classic Balanced Frequency Doublers
  • 9.3.4.1 General Circuit Description
  • 9.3.4.2 Necessary Condition to Balance the Circuit
  • 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes
  • 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration
  • 9.3.6.1 General Circuit Description
  • 9.3.6.2 Necessary Condition to Balance the Circuit
  • 9.3.7 Multiplier Design Optimization
  • 9.3.7.1 General Design Methodology
  • 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier
  • 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes
  • 9.3.7.4 Modeling and Optimization of the Diode Cell
  • 9.3.7.5 Input and Output Matching Circuits
  • 9.4 Technology of THz Diode Frequency Multipliers
  • 9.4.1 From Whisker-Contacted Diodes to Planar Discrete Diodes
  • 9.4.2 Semi-Monolithic Frequency Multipliers at THz Frequencies
  • 9.4.3 THz Local Oscillators for the Heterodyne Instrument of Herschel Space Observatory
  • 9.4.4 First 2.7 THz Multiplier Chain with More Than 10 ìW of Power at Room Temperature
  • 9.4.5 High Power 1.6 THz Frequency Multiplied Source for Future 4.75 THz Local Oscillator
  • 9.5 Power-Combining at Sub-Millimeter Wavelength
  • 9.5.1 In-Phase Power Combining
  • 9.5.1.1 First In-Phase Power-Combined Submillimeter-Wave Frequency Multiplier
  • 9.5.1.2 In-Phase Power Combining at 900 GHz
  • 9.5.1.3 In-Phase Power-Combined Balanced Doublers
  • 9.5.2 In-Channel Power Combining
  • 9.5.3 Advanced on-Chip Power Combining
  • 9.5.3.1 High Power 490-560 GHz Frequency Tripler
  • 9.5.3.2 Dual-Output 550 GHz Frequency Tripler
  • 9.5.3.3 High-Power Quad-channel 165-195 GHz Frequency Doubler
  • 9.6 Conclusions and Perspectives
  • Exercises
  • Exercise 1
  • Exercises 2-5
  • Explanatory Notes (see superscripts in text)
  • References
  • Chapter 10 GaN Multipliers
  • 10.1 Introduction
  • 10.1.1 Frequency Multipliers
  • 10.1.2 Properties of Nitride Materials
  • 10.1.3 Motivation and Challenges
  • 10.2 Theoretical Considerations of GaN Schottky Diode Design
  • 10.2.1 Analysis by Analytical Equations
  • 10.2.1.1 Nonlinearity and Harmonic Generation
  • 10.2.1.2 Nonlinearity of Ideal Schottky Diode
  • 10.2.1.3 Series Resistance
  • 10.2.2 Analysis by Numeric Simulation
  • 10.2.2.1 Introduction of Semiconductor Device Numerical Simulation
  • 10.2.2.2 Parameters for GaN-Based Device Simulation
  • 10.2.2.3 Simulation Results
  • 10.2.3 Conclusions on Theoretical Considerations of GaN Schottky Diode Design
  • 10.3 Fabrication Process of GaN Schottky Diodes
  • 10.3.1 Fabrication Process
  • 10.3.2 Etching
  • 10.3.3 Metallization
  • 10.3.3.1 Ohmic Contacts on GaN
  • 10.3.3.2 Schottky Contacts on GaN
  • 10.3.4 Bridge Interconnects
  • 10.3.4.1 Dielectric Bridge
  • 10.3.4.2 Optical Air-bridge
  • 10.3.4.3 E-beam Air-bridge
  • 10.3.5 Conclusion on Fabrication Process of GaN Schottky Diodes
  • 10.4 Small-signal High-frequency Characterization of GaN Schottky Diodes
  • 10.4.1 Current-voltage Characteristics
  • 10.4.2 Small-signal Characterization and Equivalent Circuit Modeling
  • 10.4.2.1 Step 1. Parasitic Elements
  • 10.4.2.2 Step 2. Junction Capacitance
  • 10.4.2.3 Step 3. Optimization
  • 10.4.2.4 Summary
  • 10.4.3 Results
  • 10.4.4 Conclusion
  • 10.5 Large-signal On-wafer Characterization
  • 10.5.1 Characterization Approach
  • 10.5.2 Large Signal Measurements of GaN Schottky Diodes
  • 10.5.2.1 LSNA With 50 Ù Load
  • 10.5.2.2 Time Domain Waveforms
  • 10.5.2.3 Instant C-V Under Large-signal Driven Conditions
  • 10.5.2.4 Power Handling Characteristics
  • 10.5.3 LSNA With Harmonic Load-pull
  • 10.5.4 Conclusion
  • 10.6 GaN Diode Implementation for Signal Generation
  • 10.6.1 Large-signal Modeling of GaN Schottky Diodes
  • 10.6.2 Frequency Doubler
  • 10.7 Multiplier Considerations for Optimum Performance
  • Exercises
  • References
  • Chapter 11 THz Resonant Tunneling Devices
  • 11.1 Introduction
  • 11.2 Principle of RTD Oscillators
  • 11.2.1 Basic Operation of RTD
  • 11.2.2 Principle of Oscillation
  • 11.2.3 Effect of Electron Delay Time
  • 11.2.3.1 Degradation of NDC at High Frequency
  • 11.2.3.2 Generation of Reactance at High Frequency
  • 11.3 Structure and Oscillation Characteristics of Fabricated RTD Oscillators
  • 11.3.1 Actual Structure of RTD Oscillators
  • 11.3.2 High-frequency Oscillation
  • 11.3.3 High-output Power Oscillation
  • 11.4 Control of Oscillation Spectrum and Frequency
  • 11.4.1 Oscillation Spectrum and Phase-Locked Loop
  • 11.4.2 Frequency-tunable Oscillators
  • 11.5 Targeted Applications
  • 11.5.1 High-speed Wireless Communications
  • 11.5.2 Spectroscopy
  • 11.5.3 Other Applications and Expected Future Development
  • Exercises
  • Exercise 1-6
  • Exercise 7-8
  • References
  • Chapter 12 Wireless Communications in the THz Range
  • 12.1 Introduction
  • 12.2 Evolution of Telecoms Toward THz
  • 12.2.1 Brief Historic
  • 12.2.2 Data Rate Evolution
  • 12.2.3 THz Waves: Propagation, Advantages, and Disadvantages
  • 12.2.4 Frequency Bands
  • 12.2.5 Potential Scenarios
  • 12.2.6 Comparison Between FSO and THz
  • 12.3 THz Technologies: Transmitters, Receivers, and Basic Architecture
  • 12.3.1 THz Sources
  • 12.3.2 THz Receivers
  • 12.3.3 Basic Architecture of the Transmission System
  • 12.4 Devices/Function Examples for T-Ray CMOS
  • 12.4.1 Photomixing Techniques for THz CMOS
  • 12.4.2 THz Modulated Signals Enabled by Photomixing
  • 12.4.3 Other Techniques for the Generation of Modulated THz Signals
  • 12.4.4 Integration, Interconnections, and Antennas
  • 12.4.4.1 Integration
  • 12.4.4.2 Antennas
  • 12.5 THz Links
  • 12.5.1 Modulations and Key Indicators of a THz Communication Link
  • 12.5.2 State-of-the-Art of THz Links
  • 12.5.2.1 First Systems
  • 12.5.2.2 Photonics-Based Demos
  • 12.5.2.3 Electronic-Based Demos
  • 12.5.2.4 Beyond 100 GHz High Power Amplification
  • 12.5.2.5 Table of Reported Systems
  • 12.6 Toward Normalization of 100G Links in the THz Range
  • 12.7 Conclusion
  • 12.8 Acronyms
  • Exercise: Link Budget of a THz Link
  • References
  • Chapter 13 THz Applications: Devices to Space System
  • 13.1 Introduction
  • 13.1.1 Why Is THz Technology Important for Space Science?
  • 13.1.2 Fundamentals of THz Spectroscopy
  • 13.1.3 THz Technology for Space Exploration
  • 13.2 THz Heterodyne Receivers
  • 13.2.1 Local Oscillators
  • 13.2.1.1 Frequency Multiplied Chains
  • 13.2.2 Mixers
  • 13.2.2.1 Room Temperature Schottky Diode Mixers
  • 13.2.2.2 SIS Mixer Technology
  • 13.2.2.3 Hot Electron Bolometric (HEB) Mixers
  • 13.2.2.4 State-of-the-Art Receiver Sensitivities
  • 13.3 THz Space Applications
  • 13.3.1 Planetary Science: The Case for Miniaturization
  • 13.3.2 Astrophysics: The Case for THz Array Receivers
  • 13.3.3 Earth Science: The Case for Active THz Systems
  • 13.4 Summary and Future Trends
  • Acknowledgment
  • Exercises
  • Exercise 1-3
  • Exercise 4
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

118,10 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen