Electrochemistry for Bioanalysis

 
 
Elsevier Science & Techn. (Verlag)
  • 1. Auflage
  • |
  • erschienen am 23. Januar 2021
  • |
  • 330 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-821535-7 (ISBN)
 
Electrochemistry for Bioanalysis provides a comprehensive understanding of the benefits and challenges of the application of electrochemical and electroanalytical techniques for measurement in biological samples. The book presents detailed information on measurement in a host of various biological samples from single cells, tissues and in vivo. Sections cover real insights surrounding key experimental design and measurement within multiple complex biological environments. Finally, users will find discussions on emerging topics such as electrogenerated chemiluminescence and the use of additive manufacturing for biosensor fabrication. Continuous learning reinforcement throughout the book, including problems for self-assessment, make this an ideal resource.
  • Balances the fundamentals of electrochemical and neurochemical methods with current advances in the field of bioanalysis
  • Includes self-assessment scenarios on experimental design and validation to teach readers key factors and considerations in measurement
  • Highlights applications (such as sensors and biosensors) and key points within each chapter


Dr. Bhavik Patel is a Professor of Clinical Bioanalytical Chemistry at University of Brighton, where he is a member of the Centre for Stress and Age-Related Diseases. Dr. Patel started his career at the University of Brighton in 2010 and moved up the ranks to Professor in 2019. His research interests are in the development of analytical devices and methods for monitoring signalling molecules within the central and peripheral nervous system. He has published more than 100 publications and obtained numerous awards. Dr. Patel has also focused on development of innovative e-learning approaches towards learning analytical chemistry, for which he has received various awards.
weitere Ausgaben werden ermittelt
  • Front Cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • 1 - Introduction to electrochemistry for bioanalysis
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • 1.1 Introduction
  • 1.2 Bioanalysis
  • 1.2.1 Where is my biomolecule?
  • 1.3 Principles of electrochemistry
  • 1.3.1 The electrochemical reaction
  • 1.3.2 The electrochemical cell
  • Summary
  • 2 - Amperometry and potential step techniques
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 2.1 Introduction
  • 2.2 Principles
  • 2.2.1 Amperometry
  • 2.2.2 Chronoamperometry
  • 2.2.3 Multiple-potential steps
  • 2.2.4 Pulsed amperometric detection (PAD)
  • 2.3 Strengths and limitations
  • 2.4 Applications
  • 2.5 Summary
  • References
  • 3 - Voltammetry
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 3.1 Introduction
  • 3.2 Principles
  • 3.2.1 Differential pulse voltammetry
  • 3.2.2 Fast-scan cyclic voltammetry
  • 3.3 Strengths and limitations
  • 3.4 Applications
  • 3.4.1 DPV for discriminating analytes
  • 3.4.2 FSCV in model organisms
  • 3.4.3 FSCV beyond dopamine
  • 3.4.4 Techniques to measure basal changes
  • 3.5 Summary
  • References
  • 4 - Microelectrodes and nanoelectrodes
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 4.1 Introduction
  • 4.2 Carbon fiber microelectrodes
  • 4.2.1 Making carbon fiber microelectrodes
  • 4.2.2 Types of carbon fiber microelectrodes
  • 4.2.3 Electrochemical behavior of carbon fiber microelectrodes
  • 4.2.4 Modification of carbon fiber microelectrodes
  • 4.2.4.1 Electrochemical pretreatment
  • 4.2.4.2 Chemical pretreatment
  • 4.2.4.3 Film coatings
  • 4.3 Microelectrode arrays
  • 4.4 Nanoelectrodes
  • 4.5 Summary
  • References
  • 5 - Novel sensing materials and manufacturing approaches
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 5.1 Introduction
  • 5.2 Novel carbon materials for generation of electrodes
  • 5.2.1 Carbon nanotubes
  • 5.2.1.1 Preparation of carbon nanotubes
  • 5.2.1.1.1 Arc discharge method
  • 5.2.1.1.2 Chemical vapour deposition (CVD)
  • 5.2.1.1.3 Laser ablation method
  • 5.2.1.2 Making carbon nanotube sensors
  • 5.2.2 Boron-doped diamond
  • 5.2.2.1 Fabrication of bdd electrodes
  • 5.2.3 Graphene
  • 5.3 Carbon composite electrodes
  • 5.3.1 Making carbon composite electrodes
  • 5.3.2 Electrochemistry on composite electrodes
  • 5.4 3D printing for development of electrodes
  • 5.4.1 Photopolymerization
  • 5.4.2 Extrusion
  • 5.5 Summary
  • References
  • 6 - Experimental design - challenges in conducting electrochemical measurements for bioanalysis
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Important parameters to consider when developing bioanalytical methods
  • 6.1 Key factors that influence bioanalytical measurements
  • 6.2 Electrode and instrumentation variables
  • 6.2.1 Sensitivity, calibration, and detection limits
  • 6.2.2 Spatial resolution
  • 6.2.3 Stability
  • 6.2.3.1 Fouling from large biomolecules
  • 6.2.3.2 Fouling from redox by-products
  • 6.2.3.3 Accounting for electrode fouling
  • 6.2.4 Electrode drift and noise
  • 6.2.5 Sampling
  • 6.3 Experimental variables
  • 6.3.1 Measurement environment conditions
  • 6.3.3 Flow and perfusion
  • 6.4 Biological environment
  • 6.4.1 Viability
  • 6.4.2 Signalling processes
  • 6.4.3 Manipulating the analyte concentration in the biological environment
  • 6.5 Summary
  • References
  • 7 - Electrochemistry at and in single cells
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 7.1 Introduction
  • 7.2 General introduction of exocytosis
  • 7.3 Basic history at electrochemistry at/in cells
  • 7.4 Electrodes for single cell and subcellular analysis
  • 7.5 Cellular techniques to study exocytotic neurotransmitter release
  • 7.5.1 Amperometry
  • 7.5.2 Patch amperometry
  • 7.5.3 Other techniques
  • 7.6 Dynamics of exocytotic release revealed through interpretation of single-cell amperometric data
  • 7.6.1 Analysis of the pre-spike foot and post-spike foot
  • 7.7 Modeling exocytosis and closing of the fusion pore
  • 7.7.1 Modeling exocytotic release and characteristics of fusion pore
  • 7.7.2 Understanding the closing of the fusion pore
  • 7.8 Applications of amperometry in neuroscience research
  • 7.9 Intracellular electrochemistry
  • 7.9.1 History of intracellular electrochemistry
  • 7.9.2 Patch amperometry for studying cytoplasmic catecholamine concentration
  • 7.9.3 Vesicle impact electrochemical cytometry (VIEC)
  • 7.9.3.1 Development of VIEC
  • 7.9.3.2 Mechanistic aspects regarding vesicle rupture and opening during VIEC
  • 7.9.4 Development and mechanism of intracellular vesicle impact electrochemical cytometry (IVIEC)
  • 7.9.5 The combination of SCA, iviec and viec to study exocytotic release
  • 7.10 Measurements of reactive oxygen and nitrogen species (ROS/RNS) at/in single cells
  • 7.10.1 General introduction of ros/rns
  • 7.10.2 History of electrochemical ros/rns measurements
  • 7.10.3 Small probes for ROS/RNS release
  • 7.10.4 ROS/RNS in cells and iviec
  • 7.11 Enzyme-based electrodes for single cell analysis
  • 7.11.1 Cholesterol in membranes
  • 7.11.2 Glutamate/Superoxide anions in single cells
  • 7.12 Scanning electrochemical microcopy (SECM) at single cells
  • 7.13 Summary
  • References
  • 8 - Measurement from ex vivo tissues
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 8.1 Introduction
  • 8.2 Ex vivo tissues - what are they?
  • 8.2.1 Benefits and limitations of using ex vivo tissues
  • 8.3 Experimental considerations for measuring ex vivo tissues
  • 8.3.1 Tissue preservation
  • 8.3.2 Interfacing electrodes to the ex vivo tissue
  • 8.4 Studies conducted using ex vivo tissues
  • 8.4.1 Co-culture of cells and cultured 3D structures
  • 8.4.2 Brain slices
  • 8.4.2 Lymph nodes
  • 8.4.3 Adrenal glands
  • 8.4.4 Kidneys
  • 8.4.5 Arteries and veins
  • 8.4.6 Digestive tract
  • 8.5 Measurements from ex vivo organs from simple biological models
  • 8.5.1 Invertebrates
  • 8.5.2 Zebrafish
  • 8.6 Future directions
  • 8.7 Summary
  • References
  • 9 - In vivo electrochemistry
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 9.1 Introduction
  • 9.2 What are in vivo measurements?
  • 9.3 Strengths and limitations of in vivo experimentation
  • 9.4 Criteria for ideal in vivo measurements
  • 9.5 Electrochemical techniques
  • 9.5.1 Electrochemical measurements in vivo - a historical perspective
  • 9.5.2 Method development - Fast-scan cyclic voltammetry (FSCV)
  • 9.5.3 Sensor development
  • 9.6 Experimental optimization for acute and chronic in vivo measurement
  • 9.6.1 Type of electrode
  • 9.6.2 Sensor placement
  • 9.6.3 Reference electrodes
  • 9.6.4 Electrochemical method
  • 9.6.5 Background/capacitive signal
  • 9.6.6 Anaesthesia versus freely moving
  • 9.6.7 Electrode calibration
  • 9.7 Measurements in vivo
  • 9.7.1 Measurements in the brain
  • 9.7.2 Acute monitoring
  • 9.7.3 The need for acute ambient level measurements
  • 9.7.4 Chronic measurements
  • 9.8 Measurements in different regions of the body
  • 9.9 Summary and future directions
  • References
  • 10 - Measurement in biological fluids
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 10.1 Introduction
  • 10.2 Different biological fluids
  • 10.3 Blood
  • 10.3.1 Measurement from different blood cells
  • 10.3.2 Measurement within whole blood
  • 10.4 Urine
  • 10.5 Saliva
  • 10.6 Sweat
  • 10.7 Interstitial fluid
  • 10.8 Tear fluid
  • 10.9 Future directions
  • 10.10 Summary
  • References
  • 11 - Measurement of reactive chemical species
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 11.1 Introduction
  • 11.2 Reactive oxygen species (ROS)
  • 11.3 Reactive nitrogen species (RNS)
  • 11.4 Role of ros/rns in biology
  • 11.5 Electrochemistry of ros/rns
  • 11.5.1 Challenges in electrochemical monitoring of ros/rns
  • 11.6 Electrode modifications to measure ros/rns
  • 11.6.1 Selective film coatings
  • 11.6.2 Chemically modified electrodes
  • 11.6.3 Biologically modified electrodes
  • 11.7 Measurement of reactive species from biological environments
  • 11.8 Summary
  • References
  • 12 - Electrochemical biosensors
  • Keypoints
  • Principles
  • Applications in bioanalysis
  • Strengths
  • Limitations
  • 12.1 Introduction
  • 12.2 Types of enzymatic biosensors
  • 12.2.1 First generation biosensors
  • 12.2.2 Second generation biosensors
  • 12.2.3 Third generation biosensors
  • 12.3 Immobilization of enzymes on electrode surfaces
  • 12.4 Factors that influence the performance of biosensor measurements
  • 12.5 Application of biosensors
  • 12.5.1 Determination of glutamate
  • 12.5.2 Monitoring acetylcholine and choline
  • 12.5.3 Determination of adenosine triphosphate (ATP)
  • 12.6 Summary
  • Further reading
  • References
  • 13 - Electrogenerated chemiluminescence (ECL)
  • Key points
  • Principles
  • Applications in analysis
  • Strengths
  • Limitations
  • 13.1 Electrogenerated chemiluminescence introduction
  • 13.1.1 ECL overview
  • 13.2 Electrochemistry and ECL
  • 13.2.1 Thermodynamics relevance to ECL
  • 13.2.2 Heterogeneous kinetics relevance to ECL
  • 13.2.3 Mass transport and ECL
  • 13.2.4 Chronoamperometry and ECL
  • 13.2.5 Potential sweep methods and ECL
  • 13.3 Electron transfer theory and ECL
  • 13.3.1 Electron transfer history
  • 13.3.2 Electron transfer and ECL
  • 13.4 ECL history
  • 13.4.1 ECL discovery
  • 13.4.2 Early ecl characterization
  • 13.4.3 Early ecl luminophores
  • 13.4.4 ECL mechanism development
  • 13.5 ECL instrumentation
  • 13.5.1 ECL instrumentation for application development
  • 13.5.2 ECL instrumentation for fundamental research
  • 13.6 ECL simulation
  • 13.6.1 ECL simulation methods
  • 13.6.2 Development of ecl simulations
  • 13.7 ECL materials development
  • 13.7.1 Novel ecl luminophore development
  • 13.7.2 ECL enhancement through functionalization
  • 13.8 Conclusions and perspectives
  • References
  • Index
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

200,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen