Fundamentals of Electroceramics

Materials, Devices, and Applications
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. Dezember 2018
  • |
  • 304 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-1-119-05728-4 (ISBN)
 
The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics * Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics * Introductory textbook for students to learn and make an impact on technology * Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. * Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.
1. Auflage
  • Englisch
  • USA
John Wiley & Sons Inc
  • Für höhere Schule und Studium
  • 27,58 MB
978-1-119-05728-4 (9781119057284)
weitere Ausgaben werden ermittelt
R. K. Pandey, PhD, is Ingram Professor Emeritus of Texas State University, San Marcos, TX, Cudworth Professor Emeritus of the University of Alabama, Tuscaloosa, AL, and Professor Emeritus of Texas A&M University, College Station, TX. He is also a Fellow of the American Ceramic Society, a Life Senior Member of the IEEE, and a Senior Member of the American Physical Society.
Preface xiii

About the CompanionWebsite xvii

1 Nature and Types of Solid Materials 1

1.1 Introduction 1

1.2 Defining Properties of Solids 1

1.2.1 Electrical Conductance (G) 1

1.2.2 Bandgap, Eg 2

1.2.3 Permeability, ?? 3

1.3 Fundamental Nature of Electrical Conductivity 4

1.4 Temperature Dependence of Electrical Conductivity 4

1.4.1 Case of Metals 5

1.4.2 Case of Semiconductors 5

1.4.3 Frequency Spectrum of Permittivity (or Dielectric Constant) 6

1.5 Essential Elements of Quantum Mechanics 7

1.5.1 Planck' Radiation Law 7

1.5.2 Photoelectric Effect 8

1.5.3 Bohr'sTheory of Hydrogen Atom 10

1.5.4 Matter-Wave Duality: de Broglie Hypothesis 11

1.5.5 Schroedinger'sWave Equation 12

1.5.6 Heisneberg's Uncertainty Principle 13

1.6 Quantum Numbers 13

1.7 Pauli Exclusion Principle 14

1.8 Periodic Table of Elements 15

1.9 Some Important Concepts of Solid-State Physics 18

1.9.1 Ceramic Superconductivity 18

1.9.2 Superconductivity and Technology 19

1.10 Signature Properties of Superconductors 19

1.10.1 Thermal Behavior of Resistivity of a Superconductor 20

1.10.2 Magnetic Nature of Superconductivity: Meissner-Ochsenfeld Effect 20

1.10.3 Josephson Effect 22

1.11 Fermi-Dirac Distribution Function 24

1.12 Band Structure of Solids 27

Glossary 29

Problems 30

References 31

Further Reading 31

2 Processing of Electroceramics 33

2.1 Introduction 33

2.2 Basic Concepts of Equilibrium Phase Diagram 33

2.2.1 Gibbs' Phase Rule 34

2.2.2 Triple Point and Interfaces 34

2.2.3 Binary Phase Diagrams 35

2.2.3.1 Totally Miscible Systems 35

2.2.3.2 Systems with Limited Solubility in Solid Phase 37

2.3 Methods of Ceramic Processing 38

2.3.1 Room Temperature Uniaxial Pressing (RTUP) 38

2.3.2 Other Methods for Powder Compaction and Densification 41

2.3.2.1 Hot Isostatic Pressing (HIP) 41

2.3.2.2 Cold Isostatic Pressing (CIP) 41

2.3.2.3 Low Temperature Sintering (LTP) 42

2.3.3 Nanoceramics 42

2.3.4 Thin Film Ceramics 42

2.3.5 Methods for Film Growth 43

2.3.5.1 Solgel Method 43

2.3.5.2 Pulsed Laser Deposition (PLD) Method 44

2.3.5.3 Molecular Beam Epitaxy (MBE) Method 46

2.3.5.4 RF Magnetron Sputtering Method 47

2.3.5.5 Liquid Phase Epitaxy (LPE) Method 49

2.3.6 Single Crystal Growth Methods for Ceramics 49

2.3.6.1 High Temperature Solution Growth (HTSG) Method or Flux Growth Method 50

2.3.6.2 Czochralski Growth Method 51

2.3.6.3 Top Seeded Solution Growth (TSSG) Method 52

2.3.6.4 Hydrothermal Growth 53

2.3.6.5 Some Other Methods of Crystal Growth 53

Glossary 54

Problems 55

References 55

3 Methods for Materials Characterization 57

3.1 Introduction 57

3.2 Methods for Surface and Structural Characterization 57

3.2.1 Optical Microscopes 58

3.2.2 X-ray Diffraction Analysis (XRD) 60

3.2.2.1 XRD Diffractometer: Intensity vs. 2?? Plot 60

3.2.2.2 Laue X-ray Diffraction Method 61

3.2.3 Electron Microscopes 63

3.2.3.1 Transmission Electron Microscope (TEM) 64

3.2.3.2 Scanning Electron Microscope (SEM) 65

3.2.3.3 Scanning Transmission Electron Microscope (STEM) 65

3.2.3.4 X-ray Photoelectron Spectroscopy (XPS) 66

3.2.4 Force Microscopy 68

3.2.4.1 Atomic Force Microscope (AFM) 68

3.2.4.2 Magnetic Force Microscope (MFM) 69

3.2.4.3 Piezoelectric Force Microscope (PFM) 69

Glossary 70

Problems 71

References 71

4 Binding Forces in Solids and Essential Elements of Crystallography 73

4.1 Introduction 73

4.2 Binding Forces in Solids 73

4.2.1 Ionic Bonding 74

4.2.2 Covalent Bonding 74

4.2.3 Metallic Bonding 74

4.2.4 Van der Waals Bonding 75

4.2.5 Polar-molecule-induced Dipole Bonds 75

4.2.6 Permanent Dipole Bonding 75

4.3 Structure-Property Relationship 75

4.4 Basic Crystal Structures 77

4.4.1 Bravais Lattice 78

4.4.2 Miller Indices for Planes and Directions 79

4.4.2.1 Rule for Indexing a Crystal Direction 80

4.5 Reciprocal Lattice 81

4.6 Relationship between d* and Miller Indices for Selected Crystal Systems 81

4.7 Typical Examples of Crystal Structures 82

4.7.1 Sodium Chloride, NaCl 82

4.7.2 Perovskite Calcium Titanate 82

4.7.3 Diamond Structure 83

4.7.4 Zinc Blende (Also Wurtzite) 84

4.8 Origin of Voids and Atomic Packing Factor (apf) 84

4.8.1 apf for a Primitive Cubic Structure (P) 85

4.9 Hexagonal and Cubic Close-packed Structures 85

4.10 Predictive Nature of Crystal Structure 86

4.11 Hypothetical Models of Centrosymmetric and Noncentrosymmetric Crystals 87

4.12 Symmetry Elements 88

4.13 Classification of Dielectric Materials: Polar and Nonpolar Groups 89

4.14 Space Groups 90

Glossary 91

Problems 92

References 93

Further Reading 93

5 Dominant Forces and Effects in Electroceramics 95

5.1 Introduction 95

5.2 Agent-Property Relationship 95

5.3 Electric Field (E), Mechanical Stress (X), and Temperature (T) Diagram: Heckmann Diagram 96

5.3.1 Piezoelectric Zone 97

5.3.2 Pyroelectric Zone 97

5.3.3 Thermoelastic Zone 98

5.4 Electric Field, Mechanical Stress, and Magnetic Field Diagram 99

5.5 Multiferroics Phenomena and Materials 101

5.6 Magnetoelectric (ME) Effect and Associated Issues 103

5.6.1 Basic Formulations Governing the ME Effect 103

5.6.2 Composite ME Materials 104

5.6.3 ME Integrated Structures 104

5.6.4 Experimental Determination 104

5.7 Applications of Multiferroics 105

5.7.1 Ferroelectric and Ferromagnetic Coupled Memory 105

5.7.2 Multiferroic Tunnel Junctions (MTJ) 106

5.8 Magnetostriction and Electrostriction 106

5.8.1 Magnetostriction 106

5.8.2 Electrostriction 107

5.9 Piezoelectricity 108

5.9.1 Crystallographic Considerations for Piezoelectricity 108

5.9.2 Mathematical Representation of Piezoelectric Effects 109

5.9.3 Constitutive Equations for Piezoelectricity 110

5.10 Experimental Determination of Piezoelectric Coefficients 111

5.10.1 Charge Coefficient, d 111

5.10.2 Stress Coefficient, e 112

5.10.3 Piezoelectric Devices and Applications 113

5.10.3.1 Piezoelectric Transducers 114

5.10.3.2 Generation of Sound and an AC Signal 114

5.10.3.3 Surface AcousticWave (SAW) Device 115

5.10.3.4 Piezoelectric Acoustic Amplifier 116

5.10.3.5 Piezoelectric Frequency Oscillator 116

5.10.4 MEMS Actuator 116

Glossary 118

Problems 119

References 120

6 Coupled Nonlinear Effects in Electroceramics 121

6.1 Introduction 121

6.2 Historical Perspective 123

6.3 Signature Properties of Ferroelectric Materials 123

6.3.1 Hysteresis Loop: Its Nature and Technical Importance 124

6.3.2 Temperature Dependence of Ferroelectric Parameters 125

6.3.3 Temperature Dependence of Dielectric Constant 125

6.3.4 Ferroelectric Domains 126

6.3.5 Electrets 126

6.3.6 Relaxor Ferroelectrics 126

6.4 Perovskite and Tungsten Bronze Structures 127

6.4.1 Perovskite Structure 127

6.4.2 Tungsten Bronze Structure 130

6.5 Landau-Ginsberg-Devonshire Mean Field Theory of Ferroelectricity 130

6.6 Experimental Determination of Ferroelectric Parameters 134

6.6.1 Poling of Samples for Experiments 134

6.6.2 Polarization vs. Electric Field 135

6.6.3 CapacitanceMeasurement and C-V Plot 136

6.6.4 Ferroelectric Domains (Experimental Determination) 137

6.7 Recent Applications of Ferroelectric Materials 138

6.8 Antiferroelectricity 139

6.9 Pyroelectricity 143

6.9.1 Historical Perspective 143

6.9.2 Pyroelectric Effect 143

6.9.3 Experimental Determination of Pyroelectric Coefficient 145

6.9.4 Applications of Pyroelectricity 146

6.10 Pyro-optic Effect 147

Glossary 148

Problems 150

References 150

Further Reading 151

7 Elements of a Semiconductor 153

7.1 Introduction 153

7.2 Nature of Electrical Conduction in Semiconductors 153

7.3 Energy Bands in Semiconductors 155

7.4 Origin of Holes and n- and p-Type Conduction 156

7.5 Important Concepts of Semiconductor Materials 158

7.5.1 Mobility, ?? 158

7.5.2 Direct and Indirect Bandgap, Eg 159

7.5.3 Effective Mass, m* 160

7.5.4 Density of States and Fermi Energy 161

7.6 Experimental Determination of Semiconductor Properties 162

7.6.1 Determination of Resistivity, ?? 162

7.6.2 Four-Point Probe (van der Pauw) Method 163

7.6.3 Two-Point Probe Method 163

7.6.4 Determination of Bandgap, Eg 164

7.6.5 Determination of N- and P-Type Nature: Seebeck Effect 164

7.6.6 Determination of Direct and Indirect Bandgap, Eg 166

7.6.7 Determination of Mobility, ?? 166

7.6.7.1 Haynes-Shockley Method 167

7.6.7.2 Hall Effect 168

Glossary 170

Problems 170

References 171

Further Reading 171

8 Electroceramic Semiconductor Devices 173

8.1 Introduction 173

8.2 Metal-Semiconductor Contacts and the Schottky Diode 174

8.2.1 Metal-Metal Contact 174

8.2.2 Metal Semiconductor Contact 175

8.2.3 Schottky Diode 176

8.2.4 Determination of Contact Potential and DepletionWidth 178

8.2.5 Oxide Semiconductor Materials andTheir Properties 179

8.2.6 In Search of UV-blue LED 181

8.2.7 Determination of I-V Characteristics of a LED 182

8.2.8 Thin-film Transistor (TFT) 183

8.3 Varistor Diodes 184

8.3.1 Metal Oxide Varistors 185

8.4 Theoretical Considerations for Varistors 186

8.4.1 Equivalent Circuit of a Varistor 186

8.4.2 Idealized Model of Varistor Microstructure 186

8.4.3 Energy Band Diagram: Grain-Grain Boundary-Grain (G-GB-G) Structure 188

8.5 Varistor-Embedded Devices 190

8.5.1 Voltage Biased Varistor and Embedded Voltage Biased Transistor (VBT) 190

8.5.1.1 Frequency Dependence of IHC 45 VBT Device 194

8.5.1.2 Comparison between a VBT, BJT, and Schottky Transistor 195

8.5.2 Electric Field Tuned Varistor and Its Embedded Electric Field Effect Transistor (E-FET) 196

8.5.2.1 Frequency Dependence of IHC 45 E-FET Device 198

8.5.3 Magnetically Tuned Varistor and Embedded Magnetic Field Effect Transistor (H-FET) 198

8.6 Magnetic Field Sensor 202

8.7 Thermistors 206

8.7.1 Heating Effects in Thermistors 207

Glossary 210

Problems 212

References 213

Further Reading 214

9 Electroceramics and Green Energy 215

9.1 Introduction 215

9.2 What is Green Energy? 215

9.3 Energy Storage and Its Defining Parameters 217

9.3.1 Capacitor as an Energy Storage Device 218

9.3.2 Battery-Supercapacitor Hybrid (BSH) Devices 220

9.3.3 Piezoelectric Energy Harvester 220

9.3.4 MEMS Power Generator 222

9.3.5 Ferroelectric Photovoltaic Devices 222

9.3.6 Solid Oxide Fuel Cells (SOFC) 224

9.3.7 Antiferroelectric Energy Storage 225

Glossary 227

Problems 227

References 228

10 Electroceramic Magnetics 229

10.1 Introduction 229

10.2 Magnetic Parameters 229

10.3 Relationship between Magnetic Flux, Susceptibility, and Permeability 230

10.4 Signature Properties of Ferrites 231

10.4.1 Temperature Dependence of Magnetic Parameters 234

10.5 Typical Structures Associated with Ferrites 234

10.6 Essential Theoretical Concepts 235

10.7 Magnetic Nature of Electron 235

10.7.1 Molecular FieldTheory 236

10.7.2 Antiferromagnetism and Ferrimagnetism 237

10.7.3 Quantum Mechanics and Magnetism 238

10.8 Classical Applications of Ferrites 239

10.9 Novel Magnetic Technologies 239

10.9.1 GMR Effect 240

10.9.2 CMR Effect 241

10.9.3 Spintronics 241

Glossary 242

Problems 243

References 245

Further Reading 245

11 Electro-optics and Acousto-optics 247

11.1 Introduction 247

11.2 Nature of Light 247

11.2.1 Fundamental Optical Properties of a Crystal 248

11.2.2 Electro-optic Effects 249

11.2.3 Selected Electro-optic Applications 251

11.2.3.1 OpticalWaveguides 251

11.2.3.2 Phase Shifters 252

11.2.3.3 Electro-optic Modulators 252

11.2.3.4 Night Vision Devices (NVD) 252

11.2.4 Acousto-optic Effect and Applications 253

Glossary 254

Problems 255

References 255

Further Reading 255

AppendixA Periodic Table of the Elements 257

AppendixB Fundamental Physical Constants and Frequently Used Symbols and Units (Rounded to Three Decimal Points) 259

AppendixC List of Prefixes Commonly Used 261

AppendixD Frequently Used Symbols and Units 263

Index 265

Preface


Let us remember: One book, one pen, one child, and one teacher can change the world.

Malala Yousafzai

The word ceramic may be most misunderstood scientific concept so far as its public image is concerned. Most people, when they hear the word ceramic, are likely to think of such things as coffee mugs, glazed pottery, floor tile, or bathroom toilets. It is largely unknown to the public, or even to many scientific communities, that the use of ceramic materials goes far beyond these products.

Ceramic materials by definition are based on inorganic raw materials. Oxides form the leading group of electroceramic materials. Aluminum oxide (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), titanium oxide (TiO2), iron oxides (FeO, Fe2O3, Fe3O4), zinc oxide (ZnO) and tin oxide (SnO2) are typical examples. As for non-traditional applications ceramics are used in aerospace and other extreme temperature applications due to their excellent thermal properties; in the medical field, ceramics are used because of their compatible with the human bone; and, in the military ceramics are used for applications such as body armor due to their extreme hardness.

The subject of this book is Electroceramic which is a special category of electronic materials. Electroceramic materials, as the name suggests, conduct electric currents obeying various physical mechanisms of current transport. These materials can exhibit a host of physical properties including high temperature superconductivity, magnetism, semiconductor, electro-optic, acousto-optic and nonlinear dielectrics. Because of their multi-faceted physical and mechanical properties these materials are poised to impact the advancement of ultrafast computer memory technology, green energy technology, sensors and detector technology as well as many other emerging areas of applied sciences and engineering. The field of electroceramic devices and applications is vast and diverse. It already impacts many areas of engineering and basic sciences such as microelectronics, solid-state sciences, microwave engineering, communication engineering, signal processing, actuators and sensors and micro-electro mechanical systems (MEMS) technology.

Electroceramic materials possess many interesting physical phenomena and that is what makes them fascinating and attractive for scientific discoveries leading to novel innovations. The physical principles involved in the origin of electroceramic phenomena are intriguing and so diverse that its intellectual challenges can be felt in a wide range of engineering and basic science disciplines. Yet electroceramic is not the household word even among electrical engineers, materials scientists, and applied physicists. Hardly anywhere a course devoted to electroceramics is offered in the US universities for electrical engineers, materials scientists, and physicists. As a result students are deprived of the knowledge in topics specific to electroceramic and its applications. Some examples may include noncentrosymmetric crystals, symmetry elements, piezoelectricity, ferroelectricity, pyroelectricity, multiferroic materials and phenomena, magnetoelectronics, spintronics, coupled hybrid devices, colossal magnetoresistive effect, giant photovoltaic effect, and energy harvesting.

The ignorance about electroceramics is pervasive. For example, many of the electrical engineering graduates and practitioners have never heard of varistor devices though almost all electrical engineering curriculums include a course or two on solid-state materials and devices. It is disappointing and yet amusing. Bipolar varistors diodes are very useful devices that are present in practically all electrical and electronic circuits as circuit protectors against abrupt surges of current or voltage. Not only that varistors are forerunners of transistors, which are named so because of certain attributes they share with varistors.

Those of us working in the area of electroceramic materials and devices believe that it deserves its own separate presence in the curriculum of electrical engineering, materials science and applied physics; as well as of ceramic engineering, and perhaps also of mechanical and chemical engineering. The nature of elecroceramics is interdisciplinary and therefore, such a course could be cross listed to be taught in many technical disciplines.

The motivation to write this book came to me in the Fall of 2010 when for the first time I offered a special topic course on electroceramics for electrical engineering and physics students at Texas State University, San Marcos, TX. After teaching for 30 plus years, courses on electronic materials and solid-state sciences at graduate and undergraduate levels at Texas A&M University and at the University of Alabama, I was confident that I would have no problems in handling this course. I had more than enough of my own lecture notes and homework problems on topics related to electroceramics. But finding a good textbook to recommend to students became a formidable enterprise. There are many books on electroceramics, but just one or two that could qualify for a text book. But they are simply too old by now and therefore inadequate for a text book. Many of the new advancements and discoveries made during the last 10-15 years are conspicuously absent in these books. As a result my resolve became stronger to undertake the task of writing a text book on electroceramics. I discussed this informally with many of my friends and colleagues at different universities, and all of us agreed that we need a new text book on the subject. Mr. Mark Mecklenborg and Mr. Greg Geiger of the American Ceramic Society also encouraged me to write such a book.

The book is divided in 11 chapters beginning with the essential elements of solid-state science and ending in electro-optics and acousto-optics. I have done my best to develop each chapter in such a way that a good student can follow the materials easily and enjoy learning about them. Separate chapters are devoted to materials processing, characterization, and crystallography including noncentrosymmetric crystals and symmetry elements. Coupled dielectric phenomena such as piezoelectricity, ferroelectricity, and pyroelectricity have been covered in two chapters; a separate chapter is devoted to electroceramic semiconductors, and so are individual chapters on green energy, magnetism, electro-optics and acousto-optics. Each chapter includes some practical examples that should be helpful in understanding the theoretical concepts discussed. I have purposely tried to keep the use of advanced mathematics just adequate enough to make the theoretical concepts understandable without intimidating the students.

Each chapter also includes suggestions for advanced reading for the benefit of interested readers. At the end of each chapter, a glossary of technical terms has been added. Students are advised to look at them first before beginning to read the materials covered in the chapter. Also a set of homework problems have been added to each Chapter. I encourage students to work out all of them thoroughly and completely because it will solidify and amplify their insight into the subject matter and give them confidence and pleasure of learning.

I owe gratitude to a long list of individuals and institutions. First and foremost, I must thank my dear wife, Dr. Christa Pandey, who has been an inspiring influence throughout my long journey in life and supportive of all my professional endeavors. Her unwavering confidence in my abilities to excel professionally has been my strength and has given me the confidence to undertake the challenges that comes naturally in executing a project such as writing a text book.

I also must thank all my former students at Texas A&M University at College Station, and at the University of Alabama at Tuscaloosa, AL, whom I had the honor of teaching one or more courses during the span of 30 years. That experience and the challenges I had to face made me a better class room teacher and a good researcher. But the driving force behind this book were my students at Texas State University at San Marcos, TX, whom I had the pleasure of teaching a special topic course on electroceramics three times. Their enthusiasm and dedication to learning and doing research in labs even as undergraduate seniors were contagious. To all these students, I owe gratitude and give my very sincere thanks for the doors they opened. Thanks also to two of my former graduate students, Dr. Jian Zhong and Dr. Hui Han, who critically reviewed one chapter each and pointed out to some of the lapses which I subsequently corrected.

My gratitude and thanks also to my friends and colleagues, Professor Rick Wilkins of Prairie View A&M University and Professors Ravi Droopad, Harold Stern and William A. Stapleton of Ingram School of Engineering at Texas State University. They were gracious and patient enough to go over two or more chapters and provide me with their suggestions and comments. All of them were valuable suggestions and I have revised these chapters incorporating all of their suggestions,

My thanks go also to my gifted grand-daughter, Dr. Alysha Kishan, for proposing multiple designs for the cover page and for teaching me the fine points of making good graphics. This has added to the looks and quality of the book. I am thankful to all the publishers who have been gracious enough to grant us permission for reproducing their copyrighted materials. I also owe thanks to institutions such as Sterling C. Evans Library at Texas A&M University and Rodgers Library for Science and Engineering of the University of Alabama for the privilege of...

Dewey Decimal Classfication (DDC)

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

115,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen