Start-Up Creation

The Smart Eco-efficient Built Environment
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 14. Mai 2016
  • |
  • 510 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100549-1 (ISBN)
 

Start-Up Creation: The Smart Eco-efficient Built Environment provides a state-of-the-art review on high-technology applications and explains how these can be applied to improve the eco-efficiency of the built environment. Divided into four main parts, the book explains the key factors behind successful startup companies that grow from university research, including the development of a business plan, the importance of intellectual property, necessary entrepreneurial skills, and innovative thinking.

Part Two presents the latest research findings on nano and bio-based technologies and their application and use to the energy efficiency of the built environment. Part Three focuses on the use of genetic algorithms, Big Data, and the Internet of Things applications. Finally, the book ends with an entire section dedicated to App development using selected case studies that illustrate their application and use for monitoring building energy-efficiency.


  • Presents a definitive guide for startups that arise from college and university research, and how the application of advanced technologies can be applied to the built environment
  • Includes case studies on new advanced technologies and apps development
  • Links startup creation to the eco-efficient built environment through software applications
  • Englisch
  • Atlanta
Elsevier Science
  • 11,79 MB
978-0-08-100549-1 (9780081005491)
0081005490 (0081005490)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Start-Up Creation
  • Related titles
  • Start-Up Creation
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Civil and Structural Engineering
  • Foreword
  • 1 - Introduction to start-up creation for the smart eco-efficient built environment
  • 1.1 A brief introduction to entrepreneurship and start-up creation
  • 1.2 Smart eco-efficient built environment: an untouched start-up pond?
  • 1.3 Outline of the book
  • References
  • One - Business plans, start-up financing, marketing, creativity and intellectual property marketing
  • 2 - Business plan basics for engineers
  • 2.1 Introduction
  • 2.1.1 What makes business planning for engineers so unique?
  • 2.1.1.1 Uncertainties and risks typical of technological business environments
  • 2.1.1.2 Three primary challenges: financing, sizing markets, and intellectual property management
  • The challenge of financing
  • The challenge of sizing markets
  • The challenge of intellectual property management
  • 2.2 How to approach business planning for engineers
  • 2.3 Developing and articulating the business model: the lean canvas approach
  • 2.4 Scaling up the business
  • 2.4.1 Market scaling
  • 2.4.2 Process and team scaling
  • 2.4.3 The danger of getting things wrong
  • 2.5 A business plan template
  • 2.5.1 A mini business plan for investors
  • 2.5.2 Key points in the business plan for employees
  • 2.6 Conclusion
  • References
  • 3 - Lean start-up: making the start-up more successful
  • 3.1 Introduction
  • 3.1.1 How to be a successful start-up
  • 3.1.2 What is lean in a lean startup?
  • 3.1.3 The link to the business model idea
  • 3.2 The main elements of lean start-ups
  • 3.2.1 Overview of key elements
  • 3.2.2 Customer feedback
  • 3.2.3 Big design or iterative design: pivot or persevere
  • 3.2.4 Business planning or hypothesis testing
  • 3.3 The key concepts of lean start-ups
  • 3.3.1 Minimum viable products: do we have a problem worth solving?
  • 3.3.2 Pivoting: have we built something people want?
  • 3.3.3 Agile development together with the customers
  • 3.3.4 Searching for a business plan: do we have the right business model?
  • 3.3.5 How to find or create the next customers: scaling
  • 3.4 Some examples of lean processes
  • 3.5 Conclusion and future trends
  • 3.5.1 Lean and global
  • 3.5.2 Further reading and links
  • Web resources
  • References
  • 4 - Start-up financing
  • 4.1 Introduction
  • 4.2 Debt financing
  • 4.2.1 Introduction
  • 4.2.2 Pros and cons
  • 4.2.3 Issues
  • 4.3 Equity financing
  • 4.3.1 Introduction
  • 4.3.2 Pros and cons
  • 4.3.3 Key issues
  • 4.4 Convertible debt financing
  • 4.4.1 Introduction
  • 4.4.2 Pros and cons
  • 4.4.3 Key issues
  • 4.5 Crowdfunding
  • 4.5.1 Introduction
  • 4.5.1.1 Donations
  • 4.5.1.2 Rewards
  • 4.5.1.3 Prepurchase
  • 4.5.1.4 Lending
  • 4.5.1.5 Equity crowdfunding
  • 4.5.2 Pros and cons
  • 4.5.3 Key issues
  • 4.6 Conclusions and future trends
  • References
  • 5 - Marketing for start-ups
  • 5.1 Introduction
  • 5.2 Conceptual framework
  • 5.2.1 Science- and technology-based start-ups
  • 5.2.2 Navigating in an innovation context and building a network: an industrial marketing perspective
  • 5.2.3 Marketing for start-ups
  • 5.3 Case studies
  • 5.3.1 Alpha
  • 5.3.2 Beta
  • 5.3.3 Relationships with innovation support actors
  • 5.3.4 Relationships with business actors and customers
  • 5.4 Concluding discussion
  • 5.4.1 Managerial implications
  • 5.4.2 Limitations
  • References
  • 6 - A minimalist model for measuring entrepreneurial creativity in eco-systems
  • 6.1 A savvy Scotsman
  • 6.2 An impossible Irishman
  • 6.3 An eccentric Englishman
  • 6.4 Conclusion
  • References
  • 7 - Intellectual property
  • 7.1 Introduction
  • 7.2 Forms of intellectual property rights
  • 7.2.1 Trademarks
  • 7.2.2 Industrial designs
  • 7.2.3 Patents and utility models
  • 7.2.4 Copyrights
  • 7.2.5 Trade secrets
  • 7.3 Historical development of the intellectual property protection
  • 7.3.1 Patents
  • 7.3.2 Trademarks
  • 7.3.3 Copyrights
  • 7.4 Regulatory aspects of intellectual property protection
  • 7.4.1 International framework of the protection of intellectual property rights
  • 7.4.2 Intellectual property protection in the European Union
  • 7.5 Some considerations of the intellectual property protection for start-up businesses
  • 7.6 Conclusions
  • References
  • Two - Nano and biotechnologies for eco-efficient buildings
  • 8 - Nano-based thermal insulation for energy-efficient buildings
  • 8.1 Introduction
  • 8.2 Thermal conductivity
  • 8.3 Traditional thermal building insulation
  • 8.3.1 Mineral wool
  • 8.3.2 Expanded polystyrene
  • 8.3.3 Extruded polystyrene
  • 8.3.4 Cellulose
  • 8.3.5 Cork
  • 8.3.6 Polyurethane
  • 8.3.7 Other building materials
  • 8.4 State-of-the-art thermal building insulation
  • 8.4.1 Vacuum insulation panels
  • 8.4.2 Gas-filled panels
  • 8.4.3 Aerogels
  • 8.4.4 Phase change materials
  • 8.5 Nanotechnology applied on thermal insulation
  • 8.6 Concepts for future thermal building insulation
  • 8.6.1 Vacuum insulation materials
  • 8.6.2 Gas insulation materials
  • 8.6.3 Nano insulation materials
  • 8.6.4 Dynamic insulation materials
  • 8.6.5 Concrete and applications of nano insulation materials
  • 8.6.6 NanoCon
  • 8.6.7 Other future materials and solutions?
  • 8.7 A comparison of weaknesses and strengths
  • 8.7.1 Robustness of traditional thermal insulation materials
  • 8.7.2 Thermal conductivity of state-of-the-art thermal insulation materials
  • 8.7.3 Thermal conductivity of future thermal insulation materials
  • 8.7.4 Thermal conductivity and other properties
  • 8.7.5 Requirements of future thermal insulation materials and solutions
  • 8.7.6 The potential of miscellaneous thermal insulation materials and solutions
  • 8.7.7 Potential cost savings by applying vacuum insulation panels
  • 8.7.8 Condensation risk by applying vacuum insulation panels in the building envelope
  • 8.7.9 The cardinal weaknesses of vacuum insulation panels
  • 8.7.10 Expanded polystyrene encapsulated vacuum insulation panels
  • 8.7.11 Vacuum insulation materials and gas insulation materials versus nano insulation materials
  • 8.7.12 The regulating potential of dynamic insulation materials
  • 8.7.13 The construction potential of NanoCon
  • 8.7.14 Assessing weaknesses and strengths
  • 8.7.15 Does the future belong to nano insulation materials, dynamic insulation materials and NanoCon?
  • 8.7.16 Future research pathways
  • 8.8 Experimental pathways
  • 8.8.1 Moving from concepts to experiments
  • 8.8.2 Membrane foaming method
  • 8.8.3 Gas release method
  • 8.8.4 Template method
  • 8.9 Experimental synthesis of hollow silica nanospheres
  • 8.9.1 Hollow silica nanosphere experimental details
  • 8.9.2 Hollow silica nanosphere results
  • 8.10 Start-up creation of nano-based thermal insulation
  • 8.11 Future perspectives for the research paths ahead
  • 8.12 Conclusions
  • Acknowledgments
  • References
  • 9 - Nano-based phase change materials for building energy efficiency*
  • 9.1 Introduction
  • 9.2 Classification of phase change materials
  • 9.2.1 Based on material
  • 9.2.2 Based on packaging
  • 9.3 Synthesis of nano phase change materials
  • 9.3.1 Nano-encapsulated phase change materials
  • 9.3.2 Nanoparticle phase change material composites
  • 9.4 Characterization of nano phase change materials
  • 9.4.1 Thermophysical properties
  • 9.4.2 Test methods for thermal characterization
  • 9.5 Building applications
  • 9.6 Phase change material manufacturers
  • 9.7 Summary and conclusions
  • 9.8 Future research
  • Nomenclature
  • Acknowledgments
  • References
  • 10 - Nano-based chromogenic technologies for building energy efficiency
  • 10.1 Introduction
  • 10.2 Chromogenic technologies
  • 10.2.1 Thermochromic technology
  • 10.2.2 Electrochromic technology
  • 10.2.3 Gasochromic technology
  • 10.2.4 Photochromic technology
  • 10.2.5 Creation of start-ups
  • 10.3 Performance demonstrations
  • 10.3.1 Experiments
  • 10.3.1.1 Single thermochromic glazing
  • 10.3.1.2 Double thermochromic glazing
  • 10.3.2 Simulations
  • 10.4 Performance improvement
  • 10.4.1 Radiation properties
  • 10.4.1.1 Long-wave thermal radiation
  • 10.4.1.2 Solar radiation properties
  • 10.4.2 Thermal transmittance
  • 10.5 Conclusions and future trends
  • References
  • 11 - Façade integrated photobioreactors for building energy efficiency
  • 11.1 Introduction
  • 11.2 What are microalgae?
  • 11.3 What is a photobioreactor?
  • 11.3.1 Panel-type photobioreactors
  • 11.3.2 Tubular-type photobioreactors
  • 11.3.3 Fermenter tank photobioreactors
  • 11.3.4 Integrated photobioreactor designs
  • 11.3.5 Design and scale-up parameters
  • 11.3.5.1 Light supply and illumination strategy
  • 11.3.5.2 Aeration and mixing
  • 11.3.5.3 Construction materials and reactor geometry
  • 11.3.5.4 Gas exchange and degassing
  • 11.3.5.5 Control elements
  • 11.4 Potential role of photobioreactor systems in building
  • 11.5 The realization of a façade photobioreactor-integrated building for the future
  • 11.6 Microalgae, a green volunteer for a better building: looking from an objective perspective for a start-up
  • 11.7 Conclusion
  • Acknowledgments
  • References
  • 12 - Biotechnologies for improving indoor air quality
  • 12.1 Introduction
  • 12.2 Issues of air pollution in indoor environments
  • 12.2.1 Classification of indoor environments
  • 12.2.2 Indoor air pollutants: types, sources, impacts
  • 12.2.3 Treatment methods of indoor air
  • 12.3 Biotechnologies for air treatment: a brief theoretical background
  • 12.3.1 Concept basics and principles
  • 12.3.2 Types of bioreactors
  • 12.3.2.1 Conventional bioreactors
  • 12.3.2.2 Plant bioreactors
  • 12.3.2.3 Membrane bioreactors
  • 12.3.2.4 Hybrid modules
  • 12.3.3 Evaluation of bioreactor performance
  • 12.3.4 Factors influencing bioreactor performance
  • 12.4 Application of biotechnologies for improving air quality in indoors
  • 12.4.1 Opportunities and challenges of using bioreactors in indoor air treatment
  • 12.4.2 Removal of specific indoor air pollutants
  • 12.4.2.1 Microorganism removal
  • 12.4.2.2 Formaldehyde removal
  • 12.4.2.3 Toluene removal
  • 12.4.2.4 Particulate matter removal
  • 12.4.2.5 Mixed volatile organic compound removal
  • 12.4.2.6 Mixed volatile organic compound and inorganic gaseous compound removal
  • 12.4.2.7 Reduction of carbon dioxide level
  • 12.4.3 Global performance relevance
  • 12.4.4 Future trends
  • 12.5 Conclusions
  • References
  • 13 - Bio-based plastics for building facades
  • 13.1 Introduction
  • 13.2 Feedstock
  • 13.3 Ecological advantages and resource efficiency
  • 13.4 Recycling and disposal
  • 13.5 Technical and design aspects
  • 13.6 Requirements
  • 13.7 Possible thermoplastic bio-based plastics and material selection
  • 13.7.1 Improving behavior to fire by compounding plastics with fire retardants
  • 13.8 Fire tests
  • 13.9 Heat resistance and possibilities
  • 13.10 Resistance to weather
  • 13.10.1 Artificial and natural weathering
  • 13.10.2 Absorption of water
  • 13.11 Further opportunities to improve properties
  • 13.12 Biopolymers: scope for design
  • 13.12.1 Transparent and translucent components
  • 13.12.2 Opaque components
  • 13.12.3 Molded components
  • 13.12.4 Function integration
  • 13.13 Facade mock-up
  • 13.13.1 Material, shaping, further processing, and recycling
  • 13.13.2 Construction
  • 13.14 Conclusion
  • References
  • Three - Algorithms, big data and Iot for eco-efficient and smart buildings
  • 14 - Development of algorithms for building retrofit
  • 14.1 Introduction
  • 14.2 Methods for the choice of energy-efficiency measures for building retrofit
  • 14.2.1 Multicriteria analysis
  • 14.2.2 Optimization
  • 14.3 Algorithms for the implementation of multiobjective optimization
  • 14.3.1 Weighted sum function versus multiobjective approach through Pareto optimality
  • 14.3.2 Optimization solution techniques
  • 14.3.2.1 Brute-force approach
  • 14.3.2.2 Direct search methods
  • 14.3.2.3 Random methods
  • 14.3.3 Natural optimization algorithms
  • 14.3.3.1 Evolutionary algorithms
  • 14.3.3.2 Genetic algorithm
  • 14.3.3.3 Particle swarm optimization
  • 14.3.3.4 Ant colony optimization
  • 14.3.3.5 Harmony search
  • 14.3.3.6 Simulated annealing
  • 14.4 Application example: optimization of energy retrofit measures applied on residential buildings
  • 14.4.1 The case study
  • 14.4.2 Energy-efficiency measures
  • 14.4.3 Coupling NSGA-II with dynamic simulation
  • 14.4.4 Evaluation objectives
  • 14.4.5 Results
  • 14.5 Conclusion
  • References
  • 15 - The use of algorithms for light control
  • 15.1 Introduction
  • 15.1.1 Importance of light
  • 15.1.2 Light control algorithms
  • 15.1.3 Lighting control market
  • 15.1.3.1 Azienda Ospedaliera Universitaria Ospedali Riuniti in Ancona
  • 15.1.3.2 General hospital Chania Saint George
  • 15.1.3.3 Loccioni Group building
  • 15.2 Lighting requirements in buildings
  • 15.3 Development of light-control algorithms
  • 15.4 Integration and implementation of the control algorithms in pilot buildings
  • 15.4.1 Azienda Ospedaliera Universitaria Ospedali Riuniti
  • 15.4.2 Saint George hospital
  • 15.4.3 LOC and Its Energy Department: A Well Established Start-up
  • 15.5 Conclusion
  • Acknowledgments
  • References
  • 16 - Big data analytics and cloud computing for sustainable building energy efficiency
  • 16.1 Introduction
  • 16.2 Literature review of building energy management systems
  • 16.3 Overview of big data and cloud computing technologies
  • 16.3.1 Big data analytics
  • 16.3.2 Cloud computing
  • 16.3.3 Benefits of big data analytics with cloud computing
  • 16.4 Framework design of the proposed smart decision support system for building energy efficiency
  • 16.4.1 Real-time data access layer
  • 16.4.2 Integrated analytics bench
  • 16.4.2.1 Hybrids of machine learners and time-series data mining techniques
  • 16.4.2.2 Dynamic optimization algorithm for energy-saving alternatives
  • 16.4.3 Web-based smart decision support system
  • 16.5 Conclusions
  • References
  • 17 - Intelligent decision-support systems and the Internet of Things for the smart built environment
  • 17.1 Introduction
  • 17.1.1 Definition, characteristics, and components
  • 17.1.2 Design
  • 17.1.3 Technological trends
  • 17.2 Domain-specific examples and applications
  • 17.3 Machine-to-machine
  • 17.4 Intelligent decision-support systems for Internet of Things
  • 17.5 The trends and future of the Internet of Things
  • 17.6 Internet of Things start-ups
  • Acknowledgments
  • References
  • 18 - App programming and its use in smart buildings
  • 18.1 Introduction
  • 18.1.1 Motivating app start-ups
  • 18.1.2 From building automation to smart buildings
  • 18.1.3 Remaining chapter organization
  • 18.2 Types of apps
  • 18.2.1 General building system anatomy
  • 18.2.2 Native apps
  • 18.2.3 Cloud apps
  • 18.2.4 Web apps
  • 18.2.5 Dashboard apps
  • 18.2.6 Ambient devices
  • 18.2.7 Agent apps
  • 18.2.8 Other issues to consider
  • 18.3 Methodologies for creating apps
  • 18.3.1 Creating apps using evolutionary delivery
  • 18.3.2 Front-end and back-end app development
  • 18.3.3 How to collect and store data
  • 18.3.4 Ubiquitous sensor platforms and Internet of Things
  • 18.3.5 App development environments
  • 18.4 Conclusions
  • References
  • 19 - Apps for smart buildings: a case study on building security
  • 19.1 Introduction
  • 19.2 Networking technologies for smart homes
  • 19.2.1 Wired legacy systems
  • 19.2.2 Wireless 802.11 (WiFi)
  • 19.2.3 Wireless 802.15.4 (ZigBee/Z-Wave)
  • 19.2.4 Wireless 802.15.6 (BLE)
  • 19.3 The vulnerability of wireless networks: a case of cyber-security threat
  • 19.4 Reinforcing the security of wireless communications: the case of smart locks
  • 19.5 The need for secure data exchange and storage
  • 19.6 The need for innovative approaches to handle data generated: the case of smart cameras
  • 19.7 Smart home products: a fragmented landscape
  • 19.7.1 Motion detectors
  • 19.7.2 Door open/close sensors
  • 19.7.3 Presence sensors
  • 19.8 Conclusions and future trends
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

243,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok