Lake Bonneville: A Scientific Update

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 24. August 2016
  • |
  • 696 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-63594-5 (ISBN)
 

Lake Bonneville: A Scientific Update showcases new information and interpretations about this important lake in the North American Great Basin, presenting a relatively complete summary of the evolving scientific ideas about the Pleistocene lake. A comprehensive book on Lake Bonneville has not been published since the masterpiece of G.K. Gilbert in 1890. Because of Gilbert's work, Lake Bonneville has been the starting point for many studies of Quaternary paleolakes in many places throughout the world. Numerous journal articles, and a few books on specialized topics related to Lake Bonneville, have been published since the late 1800s, but here the editors compile the important data and perspectives of the early 21st century into a book that will be an essential reference for future generations. Scientific research on Lake Bonneville is vibrant today and will continue into the future.


  • Makes the widespread and detailed literature on this well-known Pleistocene body of water accessible
  • Gives expositions of the many famous and iconic landforms to help protect and preserve them for posterity
  • Contains over 300 illustrations, most in full color
  • Offers the first comprehensive book on Lake Bonneville since the masterpiece published by G.K. Gilbert in 1890
0928-2025
  • Englisch
  • Oxford
  • |
  • Niederlande
Elsevier Science
  • 61,81 MB
978-0-444-63594-5 (9780444635945)
0444635947 (0444635947)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Frontispiece
  • Lake Bonneville: A Scientific Update
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • Foreword
  • Letting Earth Tell Its Story
  • Introduction
  • Lake Bonneville in Western North America
  • Lake Bonneville Chronology
  • This Volume
  • Gilbert's Contributions and Legacy
  • Acknowledgments
  • References
  • Chapter 1: The Present as a Key to the Past: Paleoshoreline Correlation Insights from Great Salt Lake
  • 1.1. Introduction
  • 1.2. Great Salt Lake and Lake Bonneville as a System
  • 1.3. Challenges of Correlating Shorelines
  • 1.4. Evidence from Great Salt Lake
  • 1.5. Initial Variability of Shoreline Evidence due to Coastal Processes
  • 1.6. Bays, Thresholds, and Constrictions
  • 1.7. Conclusions
  • Acknowledgments
  • References
  • Chapter 2: The Bear River's History and Diversion: Constraints, Unsolved Problems, and Implications for the Lake Bonnevil ...
  • 2.1. Introduction
  • 2.2. Setting and Evolution of the Upper Bear River
  • 2.3. History of Faulting and Volcanism in Gem Valley
  • 2.3.1. Building of the Drainage Divide in Gem Valley
  • 2.4. Chronostratigraphy of Southern Gem Valley and Oneida Narrows
  • 2.4.1. Prior Chronostratigraphy
  • 2.4.2. History of Bear River Water Input to Southern Gem Valley
  • 2.4.3. New Age Control in the Upper Main Canyon Formation and Overlying Units
  • 2.5. Proxy Evidence from the Bonneville Basin
  • 2.6. Discussion
  • 2.6.1. Paleogeography and Diversion
  • 2.6.2. Implications of Bear River Drainage Integration
  • 2.6.3. Primary Unsolved Problems
  • References
  • Chapter 3: The Pilot Valley Shoreline: An Early Record of Lake Bonneville Dynamics
  • 3.1. Introduction
  • 3.2. Description
  • 3.3. Lake Margin Characteristics
  • 3.4. Early Lake Hydrograph
  • 3.5. Discussion
  • 3.6. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 4: Landslides, Alluvial Fans, and Dam Failure at Red Rock Pass: The Outlet of Lake Bonneville
  • 4.1. Introduction
  • 4.2. Mass Movements
  • 4.3. Groundwater
  • 4.4. Summary
  • Acknowledgments
  • References
  • Chapter 5: The Bonneville Shoreline: Reconsidering Gilbert's Interpretation
  • 5.1. Introduction
  • 5.2. Previous Work
  • 5.3. Methodological Approach and Shoreline Geomorphology
  • 5.4. The Bonneville Shoreline
  • 5.5. Basin-Wide Consistency
  • 5.6. Summary
  • Acknowledgments
  • References
  • Chapter 6: The Bonneville Flood-A Veritable Débâcle
  • 6.1. Introduction
  • 6.2. "For a Time the Outpouring Was a Veritable Débâcle"
  • 6.3. Melon Gravel
  • 6.4. "The Flood Volume of the Missouri"
  • 6.5. "Lake Bursts"
  • Acknowledgments
  • References
  • Chapter 7: The Provo Shoreline of Lake Bonneville
  • 7.1. Introduction
  • 7.2. G.K. Gilbert on the Provo Shoreline
  • 7.3. Shorezone Geomorphology and Deposits
  • 7.4. Nearshore and Offshore Sediments
  • 7.5. Chronology and Dynamics
  • 7.5.1. History of Chronologic Studies
  • 7.5.2. Integrated Model
  • 7.5.3. Isostatic Rebound
  • 7.6. Paleoclimate Interpretations
  • 7.6.1. Evolution of Thought
  • 7.6.2. Comparison with Great Basin Lake Records
  • 7.6.3. Overflow
  • 7.7. Questions and Future Studies
  • 7.8. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 8: Isostatic Rebound and Palinspastic Restoration of the Bonneville and Provo Shorelines in the Bonneville Basin, ...
  • 8.1. Introduction
  • 8.2. Previous Work
  • 8.3. Methods
  • 8.4. Results
  • 8.5. Discussion and Conclusions
  • Acknowledgments
  • Supplemental Data
  • References
  • Chapter 9: Using Lake Bonneville Features to Calibrate In Situ Cosmogenic Nuclide Production Rates
  • 9.1. Introduction
  • 9.2. Advantages of Lake Bonneville for Calibration
  • 9.2.1. Geochronological Constraints on the Bonneville and Provo Shorelines, and the Bonneville Flood
  • 9.3. Sampling Locations
  • 9.3.1. Tabernacle Hill
  • 9.3.1.1. Site-Specific Considerations
  • 9.3.2. Promontory Point
  • 9.3.2.1. Site-Specific Considerations
  • 9.3.3. Flood-Scoured Basalts and Melon Gravels in Idaho
  • 9.4. A Summary of Nuclide Calibrations at Lake Bonneville
  • 9.5. Conclusions
  • Acknowledgments
  • References
  • Chapter 10: Late Pleistocene to Early Holocene Sedimentary History of the Lake Bonneville Pilot Valley Embayment, Utah-Ne ...
  • 10.1. Introduction
  • 10.2. Site Description
  • 10.3. Methods
  • 10.4. Results
  • 10.4.1. Stratigraphy and Sedimentology
  • 10.4.2. Ostracods
  • 10.4.3. Mineralogy
  • 10.4.4. Bulk Chemistry-Major and Trace Elements
  • 10.4.5. Total Inorganic Carbon and Total Organic Carbon
  • 10.4.6. Stable Isotopes-d18O and d13C
  • 10.4.7. Dating
  • 10.5. Discussion
  • 10.5.1. Unit V
  • 10.5.2. Unit IV
  • 10.5.3. Unit III
  • 10.5.4. Unit II
  • 10.5.5. Unit I
  • 10.6. Conclusions
  • Acknowledgments
  • Appendix A. XRF Results from PVC 15
  • References
  • Chapter 11: Late Quaternary Changes in Lakes, Vegetation, and Climate in the Bonneville Basin Reconstructed from Sediment ...
  • 11.1. Introduction
  • 11.1.1. Geographic Setting
  • 11.1.2. Past and Present Lakes in the Bonneville Basin
  • 11.2. Sediment Cores from GSL
  • 11.2.1. Lithologic Units
  • 11.2.2. Correlations Between Core Sediments and Lake History
  • 11.2.3. Chronology of GSL Sediment Cores
  • 11.3. Modern Vegetation
  • 11.3.1. Desert and Steppe
  • 11.3.2. Woodland and Scrub
  • 11.3.3. Montane and Subalpine Conifer Forests
  • 11.3.4. Alpine Meadows and Barren
  • 11.3.5. Climate and Vegetation
  • 11.4. Vegetation History
  • 11.4.1. Previous Palynological Studies
  • 11.4.2. Pollen Analysis
  • 11.4.3. Pollen Flora
  • 11.4.4. Comparison of Modern Vegetation with Latest Holocene Pollen Spectra
  • 11.4.5. Interpretation of the Fossil Pollen Record from Lake Sediments in the Bonneville Basin
  • 11.5. Pollen Stratigraphy of GSL96+ (Figs. 11.8 and 11.9
  • Table 11.3)
  • 11.5.1. Before Lake Bonneville
  • 11.5.1.1. Pollen zone A (1062.6 to 824.2 cm depth
  • 39.9 to 28.5 cal ka
  • 36 samples)
  • 11.5.2. Lake Bonneville
  • 11.5.2.1. Pollen Zone B (819.2 to 681.5 cm Depth
  • 27.0 to 12.2 cal ka, 35 Samples)
  • 11.5.3. Pleistocene-Holocene Transition
  • 11.5.3.1. Pollen Zone C (678.0 to 619.5 cm Depth
  • 13.1 to 10.7 cal ka, 16 Samples, DM and FLM Sediments)
  • 11.5.4. The Holocene
  • 11.5.4.1. Pollen Zone D (614.5 to 515.0 cm Depth
  • 10.6 to 7.2 cal ka
  • 13 Samples
  • BSM Sediments)
  • 11.5.4.2. Pollen Zone E (510.0 to 5.4 cm depth
  • 7.1 cal ka to near Present
  • 68 Samples
  • BSM Sediments Throughout)
  • 11.6. Discussion
  • 11.6.1. Conditions Before the Rise of Lake Bonneville
  • 11.6.2. The Rise of Lake Bonneville to the Bonneville and Provo Shorelines
  • 11.6.3. Regression from the Provo Shoreline and Return to Closed-Basin Hydrology
  • 11.6.4. Pleistocene-Holocene Transition
  • 11.6.5. Early Holocene (10.6 to 7.2 cal ka)
  • 11.6.6. Middle Holocene (~7.2 to 4 cal ka)
  • 11.6.7. Late Holocene NP (~4.0 to 2.0 cal ka)
  • 11.6.8. Late Holocene: The Last 2000Years
  • 11.7. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 12: The Fishes of Lake Bonneville: Implications for Drainage History, Biogeography, and Lake Levels
  • 12.1. Introduction
  • 12.2. Materials and Methods: Lake Bonneville Ichthyofaunas
  • 12.2.1. Deweyville
  • 12.2.2. Hot Springs
  • 12.2.3. Cathedral Cave
  • 12.2.4. Black Rock Canyon
  • 12.2.5. Smith Creek Cave
  • 12.2.6. Homestead Cave
  • 12.2.7. The Old River Bed
  • 12.3. Results: Systematics and Osteology
  • 12.4. The Lake Bonneville Ichthyofauna
  • 12.5. Fish Inferences Regarding Bonneville Basin Drainage History
  • 12.5.1. Snake River to Great Basin Connections
  • 12.5.2. Evolution of Prosopium Species in Lake Bonneville and Bear Lake
  • 12.6. Bonneville Basin Fishes and Late Quaternary Lake Levels
  • 12.6.1. The Homestead Cave Fish Sequence
  • 12.6.2. Summary and Deposition of the Homestead Cave Fishes
  • 12.6.3. Strontium Ratios, the Homestead Fishes, and Paleolake Levels
  • 12.6.4. Change in Fish Size
  • 12.6.5. Change in Taxonomic Abundances
  • 12.6.6. Fish Die-Offs of Terminal Pleistocene Lake Bonneville: 13.1-11.8 cal ka BP
  • 12.6.7. Fish Recolonize the Gilbert Episode Lake
  • 12.6.8. Lake Level Fluctuations of Great Salt Lake
  • 12.7. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 13: Changes in Late Quaternary Mammalian Biogeography in the Bonneville Basin
  • 13.1. Introduction
  • 13.2. Late Pleistocene Extinctions (>12.7 cal ka BP)
  • 13.3. The Early Holocene (11.5-9.2 cal ka BP)
  • 13.4. Middle Holocene Desertification (9.2-4.5 cal ka BP)
  • 13.5. The Late Holocene (4.5 cal ka BP-Present)
  • 13.6. Summary
  • Acknowledgments
  • References
  • Chapter 14: Bonneville Basin Avifaunal Change at the Pleistocene/Holocene Transition: Evidence from Homestead Cave
  • 14.1. Introduction
  • 14.2. Materials and Methods
  • 14.3. Taxonomic Composition of the Homestead Avifauna
  • 14.4. Depositional Origin
  • 14.5. Terminal Pleistocene and Early Holocene Change in the Bonneville Basin Avifauna
  • 14.5.1. Change in the Aquatic Avifauna
  • 14.5.2. Change in the Terrestrial Avifauna: Greater Sage-Grouse
  • 14.6. Summary and Conclusions
  • Acknowledgments
  • Appendix:. Descriptive Taxonomic Summary
  • References
  • Chapter 15: Quaternary Vegetation Changes in the Bonneville Basin
  • 15.1. Introduction
  • 15.2. Paleovegetation Information Sources
  • 15.3. Pre-Bonneville Pleistocene Vegetation
  • 15.4. Vegetation Through the Lake Bonneville Cycle
  • 15.4.1. Early Bonneville Cycle
  • 15.4.2. Middle Bonneville Cycle
  • 15.4.3. Late Bonneville Cycle
  • 15.5. Great Salt Lake Cycle
  • 15.5.1. The Younger Dryas Chronozone and Gilbert Episode
  • 15.5.2. Early Holocene
  • 15.6. Conclusions
  • Acknowledgments
  • Appendix A. Supporting Information
  • References
  • Chapter 16: Water Chemistry Changes Over Time and Space in Lake Bonneville During the Post-Stansbury Transgression
  • 16.1. Introduction
  • 16.2. Marl Sediment
  • 16.3. Reconstruction of the Hydrogeochemistry of a Closed Lake System: Tools and Proxies
  • 16.3.1. Carbonate Percentages and Mineralogy
  • 16.3.2. Carbon and Oxygen Isotopes
  • 16.3.3. Strontium Isotope Ratios
  • 16.4. Methods
  • 16.5. Results for the Post-Stansbury Transgression
  • 16.5.1. TIC and Mineralogy
  • 16.5.2. d18O and d13C
  • 16.5.3. Sr Isotopes
  • 16.6. Discussion
  • 16.6.1. Sevier Subbasin
  • 16.6.2. Main Body
  • 16.7. Interpreted Hydrogeochemistry of the Post-Stansbury Transgression
  • 16.8. Future Research
  • Acknowledgments
  • References
  • Chapter 17: Late Pleistocene Mountain Glaciation in the Lake Bonneville Basin
  • 17.1. Introduction
  • 17.2. The Pattern of Pleistocene Glaciation
  • 17.2.1. The Wasatch Mountains
  • 17.2.2. The Uinta Mountains
  • 17.2.3. Central and Southern Utah
  • 17.2.4. Western Ranges
  • 17.2.5. Northern Ranges
  • 17.3. Chronology of the Last Glaciation
  • 17.3.1. Calculations of Cosmogenic 10Be Exposure Ages
  • 17.3.2. Cosmogenic 10Be Chronologies of Moraines in the Western Uinta and Wasatch Mountains
  • 17.3.3. Cosmogenic 10Be Chronologies of Moraines in Western Ranges of the LBB
  • 17.3.4. The Pattern of the Last Glaciation in the LBB
  • 17.4. Inferred Climate During the Last Glaciation
  • 17.4.1. Regional Records of Climate Change and Inferences from the Glacial Record
  • 17.4.2. Hydrological and Climatic Effects of Lake Bonneville on Mountain Glaciers
  • 17.5. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 18: The Early Human Occupation of the Bonneville Basin
  • 18.1. Introduction
  • 18.2. The Initial Occupation of the Americas During or Prior to the Bonneville High Stand
  • 18.3. The Paleoarchaic in the Great Basin
  • 18.4. The Impact of Lake Bonneville on the Human Environment
  • 18.5. The Human Occupation of the Old River Bed Delta and Other Bonneville Basin Wetlands
  • 18.6. Transition to the Archaic
  • 18.7. Conclusions
  • Acknowledgments
  • References
  • Chapter 19: Imaging the Margins of Pleistocene Lake Deposits with High-Resolution Seismic Reflection in the Eastern Basin ...
  • 19.1. Introduction
  • 19.2. Geological Setting
  • 19.3. Methods
  • 19.3.1. P-Wave Seismic Data
  • 19.3.2. SH-Wave Seismic Data
  • 19.4. Geology Along the Seismic Profiles
  • 19.5. Results and Interpretations
  • 19.5.1. Western Margin of Pilot Valley: Profiles 1 and 2
  • 19.5.2. Eastern Margin of Pilot Valley: Profiles 3 and 4
  • 19.6. Discussion
  • 19.7. Conclusion
  • Acknowledgments
  • References
  • Chapter 20: A Speleothem Record of Great Basin Paleoclimate: The Leviathan Chronology, Nevada
  • 20.1. Introduction
  • 20.1.1. Great Basin Paleoclimate in Context
  • 20.1.2. Previous Speleothem Studies
  • 20.2. The Leviathan Chronology
  • 20.2.1. Stable Isotope Climate Record
  • 20.3. Discussion
  • 20.4. Conclusions
  • Acknowledgments
  • References
  • Chapter 21: Pleistocene Lake Bonneville as an Analog for Extraterrestrial Lakes and Oceans
  • 21.1. Introduction
  • 21.1.1. Mars
  • 21.1.2. Approach
  • 21.2. Methodology
  • 21.3. Lake Bonneville Analog and Data Interpretation
  • 21.3.1. Setting
  • 21.3.2. General Geomorphology
  • 21.3.3. Shoreline Morphology and Expression
  • 21.3.4. Equipotential Surfaces
  • 21.4. Analog Application to Mars
  • 21.4.1. Current Science Regarding a Mars Ocean
  • 21.4.2. Visual Recognition of Shorezone Features
  • 21.4.3. Digital Recognition of Shorezone Features
  • 21.4.4. Spatial Relationships
  • 21.4.4.1. Mars
  • 21.4.4.2. Lake Bonneville
  • 21.4.5. Temporal Relationships
  • 21.4.5.1. Mars
  • 21.4.5.2. Lake Bonneville
  • 21.4.6. Shoreline Preservation
  • 21.4.7. Prospects and Importance of Identifying Mars Shorelines
  • 21.5. Discussion
  • 21.5.1. The Mars Ocean
  • 21.5.2. Additional Terrestrial Analogs for Mars
  • 21.5.2.1. Lake Agassiz
  • 21.5.2.2. Baltic Sea
  • 21.5.3. Lake Bonneville as an Analog for Titan
  • 21.6. Summary
  • Acknowledgments
  • References
  • Chapter 22: Insights into Lake Bonneville Using Remote Sensing and Digital Terrain Tools
  • 22.1. Introduction
  • 22.1.1. Aerial Photography and Photogrammetry
  • 22.1.2. Light Detection and Ranging
  • 22.1.3. Imaging Spectroscopy
  • 22.2. Data Acquisition and Presentation
  • 22.2.1. Instrument Platforms
  • 22.2.2. Data Processing and Presentation
  • 22.2.3. Data Availability
  • 22.3. Applications
  • 22.3.1. Geomorphic Analysis
  • 22.3.1.1. Minor Shorelines and Erosional Features
  • 22.3.1.2. Quantitative Volume Analysis
  • 22.3.2. Lake Mineralogy
  • 22.3.3. Vegetation
  • 22.4. Discussion
  • Acknowledgments
  • References
  • Chapter 23: Lake Bonneville Geosites in the Urban Landscape: Potential Loss of Geological Heritage
  • 23.1. Introduction
  • 23.1.1. Background
  • 23.1.2. International Geoconservation
  • 23.1.3. Challenges in the United States
  • 23.2. The Geosite Model for Lake Bonneville
  • 23.2.1. Intersection of Science, Citizenry, and Urban Growth
  • 23.2.2. Examples from the Bonneville Basin
  • 23.2.3. Point of the Mountain
  • 23.2.4. Other Bonneville Basin Sites
  • 23.2.5. Case Study: The Stockton Bar
  • 23.3. Discussion
  • 23.4. Summary
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

148,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok