Vibration Engineering for a Sustainable Future

Numerical and Analytical Methods to Study Dynamical Systems, Vol. 3
Springer (Verlag)
  • erschienen am 25. April 2021
  • |
  • XXVII, 402 Seiten
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-030-46466-0 (ISBN)
This volume presents the proceedings of the Asia-Pacific Vibration Conference (APVC) 2019, "Vibration Engineering for a Sustainable Future," emphasizing work devoted to experimental methods and verification. The APVC is one of the larger conferences held biannually with the intention to foster scientific and technical research collaboration among Asia-Pacific countries. The APVC provides a forum for researchers, practitioners, and students from, but not limited to, areas around the Asia-Pacific countries in a collegial and stimulating environment to present, discuss and disseminate recent advances and new findings on all aspects of vibration and noise, their control and utilization. All aspects of vibration, acoustics, vibration and noise control, vibration utilization, fault diagnosis and monitoring are appropriate for the conference, with the focus this year on the vibration aspects in dynamics and noise & vibration. This 18th edition of the APVC was held in November 2019 in Sydney, Australia. The previous seventeen conferences have been held in Japan ('85, '93, '07), Korea ('87, '97, '13), China ('89, '01, '11, '17), Australia ('91, '03), Malaysia ('95, '05), Singapore ('99), New Zealand ('09) and Vietnam ('15).
1st ed. 2021
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 185
  • |
  • 49 s/w Abbildungen, 200 farbige Tabellen, 185 farbige Abbildungen
  • 15,26 MB
978-3-030-46466-0 (9783030464660)
weitere Ausgaben werden ermittelt

Dr. Sebastian Oberst, University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT; - Dr. Oberst works as Senior Lecturer at the newly founded Centre for Audio, Acoustics and Vibration (CAAV) and is Chief Investigator on several prestigious Australian Research Council grants. In 2017 he received the highly esteemed Junior Research Prize awarded by the European Association of Structural Dynamics (EASD) in the category "Development of Methodologies for Structural Dynamics". This prize follows the JSPS Award (2016) nominated by the Australian Academy of Science and an Australia Award/Endeavour Postdoctoral Research Fellowship (Australian Government, 2015) to work at the Imperial College London/Rolls-Royce Vibration University Technology Centre. Dr. Oberst led a DFG Priority Program (SPP1897) project in Applied and Theoretical Mechanics at the Technical University Munich; prior to this he worked as Research Associate then Space Engineer (Mechanical Antenna Design, Buccaneer Risk Mitigation Mission) at the UNSW Canberra from 2011 to 2016. Dr. Oberst received his Ph.D in Mechanical Engineering from The University of New South Wales in 2011 on his research on friction-induced instabilities and specialised since then in nonlinear dynamics of friction processes, as well as nonlinear time series analysis and signal processing, as applied to biotremology and micro-vibrational communication of insects.

Dr. Benjamin Halkon, University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT; - Dr. Benjamin Halkon is an experimentally-focuseddynamicist specialising in the development and industrially relevant application of non-contact measurements techniques and technologies primarily for the determination of structural vibration characteristics. Dr.Halkon joined UTS as a Senior Lecturer in the Faculty of Engineering & IT in 2017 and has been a core member of the Centre for Audio, Acoustics and Vibration therefrom. He has held the position of Deputy Head of School (Teaching & Learning) in the School of Mechanical and Mechatronic Engineering since early 2018 and has established, and is Academic Lead for, the LDV Lab at UTS Tech Lab - a unique facility within the region. Dr.Halkon has secured and completed many industry- and government-funded research projects and has supervised several post-doctoral and Ph.D (HDR) researchers and many UG/PG student projects in support of these. He has authored over 50 peer-reviewed articles and has contributed to policy change through his research and he is an Engineering Council accredited chartered mechanical engineer (CEng) and a Fellow of the Institution of Mechanical Engineers (FIMechE), a Fellow of the Institution of Engineers Australia (FIEAust) and chartered professional engineer (CPEng) and a Member of the Australian Acoustical Society (MAAS).

Dr.Jinchen Ji, University of Technology Sydney, School of Mechatronic and Mechanical Engineering, Faculty of Engineering and IT; -Dr.Jinchen Ji is a leading research scientist in the general areas of dynamics, vibration, and control, with over 110 journal publications. He has high-level expertise in dynamic modelling, vibration control, coordination control, synchronization and consensus control, noise control, condition monitoring, signal analysis, fault diagnosis, fatigue analysis, performance evaluation and energy consumption, and their applications to key problems in wind power industry, mining industry, manufacturing industry, agricultural industry and defense industry. He has been involved in a wide range of research projects which were financially supported by various government funding agencies and industry partners, in the fields of dynamic modelling, vibration analysis, vibration control, fatigue analysis, stability analysis, FEM analysis, and robotic systems.

Dr. Ji is an Associate Editor for two top international journals, namely, International Journal of Bifurcation and Chaos, and Journal of Vibration and Control. He is also an assessor and external reviewer for Australian Research Council ARC grant applications, Hong Kong RGC grant applications, and European Grant applications. He has been invited to be a session chair in many international conferences. He has also been invited to be a reviewer for over thirty international journals.

Dr. Terry Brown, University of Technology Sydney, School of Mechatronic and Mechanical Engineering, Faculty of Engineering and IT; - Dr. Terry Brown is a teaching focussed academic with a wide technical background and with interests and expertise in several areas. Dr. Brown joined UTS as an Associate Lecturer in 1995 and is now Senior Lecturer and Program Coordinator for Mechanical Engineering in the School of Mechanical and Mechatronic Engineering in the Faculty of Engineering and IT. He has taught in over 15 different subjects, made major contributions to establishing new courses and curriculum redevelopment and has received awards for his contribution to, and excellence in, teaching and learning. He has secured and completed, on his own and in partnership with others, several industry and government funded research and consultancy projects. These have been primarily in the areas of structural simulation and analysis and experimental verification and validation. Dr. Brown has also published widely, including in engineering education, biomechanics and vibration.

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

223,63 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen