Sustainable Construction Materials

Copper Slag
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 8. Oktober 2016
  • |
  • 336 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100988-8 (ISBN)
 

Sustainable Construction Materials: Copper Slag, as part of a series of five, the book aims to promote the use of sustainable construction materials. It is different to the norm and its uniqueness lies in developing a data matrix sourced from 400 publications, contributed by 712 authors from 337 institutions in 40 countries from 1964 to 2015, on the subject of copper slag as a construction material, and systematically, analysisng, evaluating and modelling this information for use in cement, concrete, geotechnics and road pavement applications. Related environmental issues, case studies and standards are also discussed. The work establishes what is already known and can be used. It would also help to avoid repetitive research and save valuable resources, which can instead be directed towards new research to progress the use of sustainable construction materials.

The book is structured in an incisive and easy to digest manner. As an excellent reference source, the book is particularly suited for researchers, academics, design engineers, specifiers, contractors, developers and certifying and regulatory authorities, seeking to promote sustainability within the construction sector.


  • Provides an extensive source of valuable database information supported by an exhaustive and comprehensively organized list of globally published literature spanning 40-50 years, up to 2016, with 5000 references
  • Offers an analysis, evaluation, repackaging, and modeling of existing knowledge, encouraging more responsible use of waste materials in construction
  • Presents a wealth of knowledge for use in many sectors relating to the construction profession


Ravindra Kumar Dhir OBE is an honorary professor of concrete engineering, University of Birmingham, United Kingdom; adjunct professor at Trinity College Dublin, Ireland, and emeritus professor of concrete technology, University of Dundee, United Kingdom, where he held the position of founding director of the Concrete Technology Unit (1998-2008) and developed it into an internationally acknowledged Centre of Excellence. His approach to research is visionary and creative, and by working closely with industry, he ensured a meaningful dissemination of his research into practice. He won many awards and honours,including the Order of the British Empire for services to concrete technology from the Queen (1989), Secretary of State for Trade and Industry for innovative partnership with
industry (1989 and 1990 consecutively) and honorary fellowships from the Institute of Concrete Technology, United Kingdom; Indian Concrete Institute. He served on numerous committees, including as president of the Concrete Society and on the editorial board of the Magazine of Concrete Research.
  • Englisch
  • Cambridge
Elsevier Science
  • 8,23 MB
978-0-08-100988-8 (9780081009888)
0081009887 (0081009887)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Sustainable Construction Materials
  • Related titles
  • Sustainable Construction Materials: Copper Slag
  • Copyright
  • Dedication
  • Contents
  • Author Profiles
  • Preface
  • 1 - Introduction
  • 1.1 Background
  • 1.2 Sustainable Construction Materials
  • 1.3 Copper Slag
  • 1.4 Layout and Contents
  • References
  • 2 - Methodology
  • 2.1 Introduction
  • 2.2 Sourcing and Appraisal of Literature
  • 2.2.1 Identifying and Sourcing of Literature
  • 2.2.2 Publication Timeline
  • 2.2.3 Global Publication Status
  • 2.2.4 Publication Types
  • 2.2.5 Researchers Involved
  • 2.2.6 Institutions and Organisations Involved
  • 2.2.7 Subject Area Distribution
  • 2.3 Building the Data Matrix
  • 2.3.1 Initial Sorting of Literature
  • 2.3.2 Data Mining and Parking
  • 2.4 Analysis, Evaluation and Modelling of Data
  • 2.4.1 Analysis and Evaluation
  • 2.4.2 Modelling
  • 2.5 Dissemination
  • 2.6 Conclusions
  • References
  • 3 - Production and Properties of Copper Slag
  • 3.1 Introduction
  • 3.2 Production of Copper
  • 3.2.1 Production of Copper Slag
  • 3.2.2 Processing of Spent Copper Slag
  • 3.3 Chemical Properties
  • 3.3.1 Oxide Analysis
  • 3.3.2 Mineralogy
  • 3.3.3 Cementitious Properties
  • 3.3.4 Loss on Ignition
  • 3.4 Physical Properties
  • 3.4.1 Particle Shape, Surface Texture and Colour
  • 3.4.2 Particle Size Distribution
  • Air-Cooled Copper Slag
  • Quenched and Spent Copper Slag
  • (a) Copper Slag for Concrete Applications
  • (b) Copper Slag for Geotechnical Applications
  • Copper Slag for Road Pavement Applications
  • Ground Copper Slag
  • 3.4.3 Fineness Modulus
  • 3.4.4 Fineness of Ground Copper Slag
  • 3.4.5 Specific Gravity
  • 3.4.6 Water Absorption
  • 3.4.7 Hardness
  • 3.4.8 Soundness
  • 3.4.9 Aggregate Crushing Value
  • 3.4.10 Aggregate Impact Value
  • 3.4.11 Angle of Internal Friction
  • 3.4.12 Conductivity
  • 3.4.13 Plasticity and Swelling Indices
  • 3.5 Comparison With Typical Natural Aggregates
  • 3.6 Potential Use and Applications
  • 3.6.1 Cement
  • 3.6.2 Construction Aggregate
  • 3.6.3 Abrasive Blasting Medium
  • 3.6.4 Ceramic Tiles
  • 3.6.5 Glass-Ceramics
  • 3.6.6 Polymer Matrix Composites
  • 3.6.7 Wastewater Treatment
  • 3.6.8 Other Applications
  • 3.7 Environmental Considerations
  • 3.7.1 Leaching Studies
  • 3.7.2 Life Cycle Assessment of Copper Slag
  • 3.8 Conclusions
  • References
  • 4 - Use of Copper Slag as Concrete Sand
  • 4.1 Introduction
  • 4.2 General Information
  • 4.3 Fresh Concrete Properties
  • 4.3.1 Consistence (Workability)
  • 4.3.2 Stability
  • (i)Bleeding
  • (ii)Segregation
  • 4.3.3 Density
  • 4.3.4 Air Content
  • 4.3.5 Initial and Final Setting and Hardening
  • 4.4 Strength
  • 4.4.1 Compressive Strength
  • Effects of Copper Slag Content
  • Water/Cement Ratio and Strength Relationship
  • Strength Development with Age
  • Designing Concrete with Copper Slag as Sand
  • 4.4.2 Tensile Strength
  • Splitting Cylinder Tensile Strength
  • Flexural Strength
  • 4.5 Deformation Properties
  • 4.5.1 Modulus of Elasticity
  • 4.5.2 Creep
  • 4.5.3 Shrinkage
  • 4.6 Non-destructive Tests
  • 4.7 Permeation
  • 4.8 Durability
  • 4.8.1 Carbonation
  • 4.8.2 Chloride Ingress
  • 4.8.3 Corrosion of Reinforcement
  • 4.8.4 Acid Attack
  • 4.8.5 Sulphate Attack
  • 4.8.6 Freeze-Thaw Resistance
  • 4.8.7 Abrasion
  • 4.9 High-Performance Concrete
  • 4.9.1 High-Strength Concrete
  • 4.9.2 Self-Compacting Concrete
  • 4.9.3 High-Durability Concrete
  • 4.10 Copper Tailings
  • 4.11 Environmental Impact
  • 4.12 Case Studies
  • 4.13 Conclusions
  • References
  • 5 - Copper Slag in Cement Manufacture and as Cementitious Material
  • 5.1 Introduction
  • 5.2 Copper Slag Used in Cement Clinker Manufacture
  • 5.2.1 Chemical and Mineralogical Composition of Copper Slag
  • 5.2.2 Grindability of Copper Slag
  • 5.2.3 Characteristics of Portland Cement Clinkers Containing Copper Slag as Raw Material
  • Mineralogical Characterisation of Cements Containing Copper Slag
  • Specific Gravity
  • Water Demand
  • Initial and Final Setting Times
  • Strength Development
  • Durability Requirements
  • Soundness
  • Leaching of Heavy Metals
  • 5.3 Copper Slag as Cementitious Material
  • 5.3.1 Early Age Performance
  • Heat of Hydration
  • Initial and Final Setting Times
  • Workability
  • Stability
  • Density
  • 5.3.2 Mechanical Performance
  • Compressive Strength
  • i) Replacement Level Effect
  • ii) Thermal History of Copper Slag
  • iii) Water/Cement Ratio
  • iv) Strength Development With Time
  • v) Comparison With Other Cementitious Materials
  • Flexural and Tensile Strengths
  • Elastic Deformation
  • Shrinkage
  • 5.3.3 Durability-Related Performance
  • Water Absorption
  • Carbonation
  • Chloride Ion Penetration
  • Resistance to Sulphate Attack
  • Alkali-Silica Reaction
  • Leaching
  • 5.4 Conclusions
  • References
  • 6 - Use of Copper Slag in Geotechnical Applications
  • 6.1 Introduction
  • 6.2 General Information
  • 6.3 Atterberg Limits
  • 6.4 Compaction Characteristics
  • 6.5 Permeability
  • 6.6 Consolidation
  • 6.7 Shear Strength
  • 6.7.1 Effect of Copper Slag at Different Void Ratios
  • 6.7.2 Effect of Copper Slag at Different Relative Densities
  • 6.8 Lateral Earth Pressure and Retaining Walls
  • 6.9 Copper Tailings
  • 6.10 Environmental Impact
  • 6.11 Case Studies
  • Use of Copper Slag in Revetment, Holland, Year Unknown (Gerritsen and Bruun, 1964)
  • Use of Copper Slag in Sand Compaction Piles, Japan, Year Unknown (Kitazume et al., 1998b)
  • Use of Copper Slag in Embankment, India, 2005 (Patel et al., 2007)
  • Use of Copper Slag in Embankment, India, 2008 (IRC Highway Research Board, 2009)
  • Use of Copper Slag as Unbound Aggregate, Illinois, USA, Year Unknown (Transportation Research Board, 2013)
  • 6.12 Standards and Specifications
  • 6.12.1 Geometric Requirements: Aggregate Grading and Fines Content
  • 6.12.2 Physical Requirements: Particle Density and Water Absorption
  • 6.12.3 Chemical Requirements: Acid-Soluble Sulphate, Water-Soluble and Total Sulphur Content
  • 6.12.4 Durability Requirements
  • 6.12.5 Leaching of Heavy Metals
  • 6.13 Conclusions
  • References
  • 7 - Use of Copper Slag in Road Pavement Applications
  • 7.1 Introduction
  • 7.2 General Information
  • 7.2.1 Unbound Applications
  • 7.2.2 Base Aggregates
  • 7.2.3 Bituminous and Hydraulically Bound Applications
  • 7.3 Unbound Applications
  • 7.3.1 California Bearing Ratio
  • 7.4 Hydraulically Bound Applications
  • 7.4.1 Workability and Stability
  • 7.4.2 Compressive Strength
  • 7.4.3 Flexural Strength
  • 7.4.4 Drying Shrinkage
  • 7.4.5 Abrasion Resistance
  • 7.5 Bituminous Bound Applications
  • 7.5.1 Marshall Mix Design
  • Marshall Stability (Figure 7.7(a))
  • Marshall Flow (Figure 7.7(b))
  • Air Voids (Figure 7.7(c))
  • Voids in the Mineral Aggregate (Figure 7.7(d))
  • Voids Filled With Bitumen (Figure 7.7(e))
  • 7.5.2 Stress-Strain Behaviour
  • 7.5.3 Fatigue Life
  • 7.5.4 Water Sensitivity
  • 7.6 Copper Tailings
  • 7.7 Environmental Impact
  • 7.8 Case Studies
  • 7.9 Conclusions
  • References
  • 8 - Environmental Impact, Case Studies and Standards and Specifications
  • 8.1 Introduction
  • 8.2 Environmental Impact
  • 8.2.1 The Material: Copper Slag
  • 8.2.2 Copper Slag Use in Cement Manufacture and as Cement Component
  • Cement Manufacture
  • Copper Slag as Cementitious Material
  • 8.2.3 Copper Slag Use in Concrete
  • 8.2.4 Copper Slag Use in Geotechnical Applications
  • 8.2.5 Copper Slag Use in Road Pavements
  • 8.3 Case Studies
  • 8.3.1 Copper Slag Use in Cement Manufacture
  • 8.3.2 Copper Slag Use in Concrete
  • 8.3.3 Copper Slag Use in Geotechnical Applications
  • Copper Slag as Fine Aggregate in Geotechnical Applications
  • Copper Slag as Binder in Geotechnical Applications
  • 8.3.4 Copper Slag Use in Road Pavements
  • 8.4 Standards and Specifications
  • 8.4.1 Cement Applications
  • 8.4.2 Concrete and Mortar Applications
  • 8.4.3 Geotechnical Applications
  • 8.4.4 Road Pavement Applications
  • 8.5 Conclusions
  • References
  • 9 - Epilogue
  • Reference
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

168,98 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok