Metal Oxide Nanostructures

Synthesis, Properties and Applications
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. November 2018
  • |
  • 328 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-811505-3 (ISBN)
 

Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application.

  • Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices
  • Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures
  • Provides an in-depth overview of novel applications, including chromogenics, electronics and energy


Daniela Nunes is an Assistant Professor at the Materials Science Department of FCT-UNL lecturing the courses of Micro and Nanotechnology seminars and dissertation initiation.
Her research mainly focuses on electron microscopy and materials characterization. She is co-author of 50 peer-reviewed papers. She participated on the EU project, CEOPS project with the grant agreement no: 309984.
  • Englisch
  • San Diego
  • |
  • USA
  • 9,88 MB
978-0-12-811505-3 (9780128115053)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Metal Oxide Nanostructures
  • Copyright Page
  • Dedication
  • Contents
  • About the series editor
  • About the authors
  • Foreword
  • Preface to the series
  • Preface
  • Acknowledgments
  • 1 Introduction
  • 1.1 Nanoscience and nanotechnology
  • 1.2 History of nanotechnology
  • 1.3 Nanotechnology in the real world
  • 1.3.1 Medicine
  • 1.3.2 Energy and environment
  • 1.3.3 Information and communication technologies
  • 1.4 Nanotoxicology
  • 1.5 Nanostructures
  • 1.6 Metal oxide nanostructures
  • References
  • 2 Synthesis, design, and morphology of metal oxide nanostructures
  • 2.1 Nanostructures engineering
  • 2.2 Dispersion stability
  • 2.3 Synthesis techniques
  • 2.3.1 Mechanical milling
  • 2.3.2 Physical processes
  • 2.3.3 Biological processes
  • 2.3.4 Chemical processes
  • 2.3.4.1 Sol-gel
  • 2.3.4.2 Flame spray pyrolysis
  • 2.3.4.3 Self-assembly
  • 2.3.4.4 Electrodeposition
  • 2.3.4.5 Electrospinning
  • 2.3.4.6 Solvothermal synthesis
  • 2.3.4.7 Solvothermal synthesis assisted by microwave radiation
  • 2.4 Particle nucleation and growth theory
  • 2.5 Morphology of metal oxides
  • 2.5.1 Small clusters
  • 2.5.2 Shaped nanostructures
  • 2.5.3 Agglomerates
  • References
  • 3 Structural, optical, and electronic properties of metal oxide nanostructures
  • 3.1 Introduction
  • 3.2 Zinc oxide
  • 3.3 Titanium dioxide
  • 3.4 Tungsten oxide
  • 3.5 Copper oxides
  • 3.6 Tin oxides
  • 3.7 Conclusions
  • References
  • 4 Chromogenic applications
  • 4.1 Background
  • 4.2 Electrochromic nanomaterials
  • 4.2.1 Electrochromic applications
  • 4.2.1.1 Smart electrochromic windows/displays on glass substrate
  • 4.2.1.2 Electrochromic displays on flexible substrate
  • 4.2.1.3 Cellulosic-based devices-colorimetric biosensors
  • 4.3 Thermochromic nanomaterials
  • 4.3.1 Thermochromic applications
  • 4.3.1.1 Smart thermochromic coatings
  • 4.4 Photochromic nanomaterials
  • 4.4.1 Photochromic applications
  • 4.5 Gasochromic nanomaterials
  • 4.5.1 Gasochromic applications
  • 4.5.1.1 Sensors and biosensors
  • 4.6 Magnetochromic nanomaterials
  • 4.6.1 Magnetochromic applications
  • 4.7 Conclusions
  • References
  • 5 Electronic applications of oxide nanostructures
  • 5.1 How attractive is "nano" to oxide electronics?
  • 5.1.1 Introduction: status of oxide electronics in 2018
  • 5.1.2 Challenges for the next generation of flexible and transparent electronic systems: a brief review of alternative tech...
  • 5.1.3 Oxide nanostructures come to the rescue
  • 5.2 Transistors based on individual oxide nanowires
  • 5.2.1 Overview on device structures and device physics
  • 5.2.2 Initial works with back-gated ZnO and SnO2 nanowire FETs
  • 5.2.3 Oxide nanowire surface passivation
  • 5.2.4 Contact resistance
  • 5.2.5 Doping and multicomponent oxide nanowires
  • 5.2.6 P-type oxide nanostructures
  • 5.2.7 Alternative dielectrics and transistor structures
  • 5.3 Transistors based on networks of oxide nanostructures
  • 5.3.1 Introduction: the need for networks
  • 5.3.2 Routes to obtain random and aligned networks: transfer and direct growth methods
  • 5.3.3 Transistors using random networks of oxide nanostructures
  • 5.3.4 Transistors using aligned networks or arrays of oxide nanostructures
  • 5.4 Integration of transistors with oxide nanostructures into circuits
  • References
  • 6 Oxide materials for energy applications
  • 6.1 Background
  • 6.2 Energy-related applications
  • 6.3 Conclusions
  • References
  • 7 Oxide nanoparticle hybrid materials and applications
  • 7.1 Hybrid oxide nanostructures for batteries
  • 7.2 Polymer and composite hybrid electrolytes
  • 7.3 Hybrid thermoelectric materials
  • 7.4 Piezoelectric hybrid composites
  • 7.5 Oxide nanoparticle hybrids in (opto)electronics
  • 7.5.1 Transparent conductors
  • 7.5.2 Hybrids in sensing devices
  • 7.5.3 Hybrids in printed electronics
  • References
  • 8 Conclusions and future perspectives
  • 8.1 Exploitation of nanomaterials and nanotechnologies
  • 8.2 Metal oxides: processing, properties evaluation and applications
  • 8.2.1 The design of nanostructures
  • 8.2.2 Oxide nanostructure synthesis and deposition
  • 8.2.3 Device level
  • 8.2.4 Integration
  • 8.3 Materials for energy
  • 8.4 Hybrid structures
  • 8.5 Exploiting paper for electronics
  • 8.6 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,15 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen