<b>I Preliminaries 1</b>
<b>1 Vector Spaces 5</b>
1.1 Vector Spaces 5
1.2 Dual Spaces 17
1.3 Pullback of Covectors 19
1.4 Annihilators 20
<b>2 Matrices and Determinants 23</b>
2.1 Matrices 23
2.2 Matrix Representations 27
2.3 Rank of Matrices 32
2.4 Determinant of Matrices 33
2.5 Trace and Determinant of Linear Maps 43
<b>3 Bilinear Functions 45</b>
3.1 Bilinear Functions 45
3.2 Symmetric Bilinear Functions 49
3.3 Flat Maps and Sharp Maps 51
<b>4 Scalar Product Spaces 57</b>
4.1 Scalar Product Spaces 57
4.2 Orthonormal Bases 62
4.3 Adjoints 65
4.4 Linear Isometries 68
4.5 Dual Scalar Product Spaces 72
4.6 Inner Product Spaces 75
4.7 Eigenvalues and Eigenvectors 81
4.8 Lorentz Vector Spaces 84
4.9 Time Cones 91
<b>5 Tensors on Vector Spaces 97</b>
5.1 Tensors 97
5.2 Pullback of Covariant Tensors 103
5.3 Representation of Tensors 104
5.4 Contraction of Tensors 106
<b>6 Tensors on Scalar Product Spaces 113</b>
6.1 Contraction of Tensors 113
6.2 Flat Maps 114
6.3 Sharp Maps 119
6.4 Representation of Tensors 123
6.5 Metric Contraction of Tensors 127
6.6 Symmetries of (0, 4)-Tensors 129
<b>7 Multicovectors 133</b>
7.1 Multicovectors 133
7.2 Wedge Products 137
7.3 Pullback of Multicovectors 144
7.4 Interior Multiplication 148
7.5 Multicovector Scalar Product Spaces 150
<b>8 Orientation 155</b>
8.1 Orientation of R<i><sup>m </sup></i>155
8.2 Orientation of Vector Spaces 158
8.3 Orientation of Scalar Product Spaces 163
8.4 Vector Products 166
8.5 Hodge Star 178
<b>9 Topology 183</b>
9.1 Topology 183
9.2 Metric Spaces 193
9.3 Normed Vector Spaces 195
9.4 Euclidean Topology on R<i><sup>m</sup></i> 195
<b>10 Analysis in R<i><sup>m </sup></i>199</b>
10.1 Derivatives 199
10.2 Immersions and Diffeomorphisms 207
10.3 Euclidean Derivative and Vector Fields 209
10.4 Lie Bracket 213
10.5 Integrals 218
10.6 Vector Calculus 221
<b>II Curves and Regular Surfaces 223</b>
<b>11 Curves and Regular Surfaces in R<sup>3</sup> 225</b>
11.1 Curves in R<sup>3</sup> 225
11.2 Regular Surfaces in R<sup>3</sup> 226
11.3 Tangent Planes in R<sup>3</sup> 237
11.4 Types of Regular Surfaces in R<sup>3</sup> 240
11.5 Functions on Regular Surfaces in R<sup>3</sup> 246
11.6 Maps on Regular Surfaces in R<sup>3</sup> 248
11.7 Vector Fields along Regular Surfaces in R<sup>3</sup> 252
<b>12 Curves and Regular Surfaces in R<sup>3</sup><i><sub>v </sub></i>255</b>
12.1 Curves in R<sup>3</sup><i><sub>v </sub></i>256
12.2 Regular Surfaces in R<sup>3</sup><i><sub>v </sub></i>257
12.3 Induced Euclidean Derivative in R<sup>3</sup><i><sub>v </sub></i>266
12.4 Covariant Derivative on Regular Surfaces in R<sup>3</sup><i><sub>v </sub></i>274
12.5 Covariant Derivative on Curves in R<sup>3</sup><i><sub>v </sub></i>282
12.6 Lie Bracket in R<sup>3</sup><i><sub>v </sub></i>285
12.7 Orientation in R<sup>3</sup><i><sub>v </sub></i>288
12.8 Gauss Curvature in R<sup>3</sup><i><sub>v</sub></i> 292
12.9 Riemann Curvature Tensor in R<sup>3</sup><i><sub>v</sub></i> 299
12.10 Computations for Regular Surfaces in R<sup>3</sup><i><sub>v</sub></i> 310
<b>13 Examples of Regular Surfaces 321</b>
13.1 Plane in R<sup>3</sup><sub>0</sub> 321
13.2 Cylinder in R<sup>3</sup><sub>0</sub> 322
13.3 Cone in R<sup>3</sup><sub>0</sub> 323
13.4 Sphere in R<sup>3</sup><sub>0</sub> 324
13.5 Tractoid in R<sup>3</sup><sub>0</sub> 325
13.6 Hyperboloid of One Sheet in R<sup>3</sup><sub>0</sub> 326
13.7 Hyperboloid of Two Sheets in R<sup>3</sup><sub>0</sub> 327
13.8 Torus in R<sup>3</sup><sub>0</sub> 329
13.9 Pseudosphere in R<sup>3</sup><sub>1</sub> 330
13.10 Hyperbolic Space in R<sup>3</sup><sub>1</sub> 331
<b>III Smooth Manifolds and Semi-Riemannian Manifolds 333</b>
<b>14 Smooth Manifolds 337</b>
14.1 Smooth Manifolds 337
14.2 Functions and Maps 340
14.3 Tangent Spaces 344
14.4 Differential of Maps 351
14.5 Differential of Functions 353
14.6 Immersions and Diffeomorphisms 357
14.7 Curves 358
14.8 Submanifolds 360
14.9 Parametrized Surfaces 364
<b>15 Fields on Smooth Manifolds 367</b>
15.1 Vector Fields 367
15.2 Representation of Vector Fields 372
15.3 Lie Bracket 374
15.4 Covector Fields 376
15.5 Representation of Covector Fields 379
15.6 Tensor Fields 382
15.7 Representation of Tensor Fields 385
15.8 Differential Forms 387
15.9 Pushforward and Pullback of Functions 389
15.10 Pushforward and Pullback of Vector Fields 391
15.11 Pullback of Covector Fields 393
15.12 Pullback of Covariant Tensor Fields 398
15.13 Pullback of Differential Forms 401
15.14 Contraction of Tensor Fields 405
<b>16 Differentiation and Integration on Smooth Manifolds 407</b>
16.1 Exterior Derivatives 407
16.2 Tensor Derivations 413
16.3 Form Derivations 417
16.4 Lie Derivative 419
16.5 Interior Multiplication 423
16.6 Orientation 425
16.7 Integration of Differential Forms 432
16.8 Line Integrals 435
16.9 Closed and Exact Covector Fields 437
16.10 Flows 443
<b>17 Smooth Manifolds with Boundary 449</b>
17.1 Smooth Manifolds with Boundary 449
17.2 Inward-Pointing and Outward-Pointing Vectors 452
17.3 Orientation of Boundaries 456
17.4 Stokes's Theorem 459
<b>18 Smooth Manifolds with a Connection 463</b>
18.1 Covariant Derivatives 463
18.2 Christoffel Symbols 466
18.3 Covariant Derivative on Curves 472
18.4 Total Covariant Derivatives 476
18.5 Parallel Translation 479
18.6 Torsion Tensors 485
18.7 Curvature Tensors 488
18.8 Geodesics 497
18.9 Radial Geodesics and Exponential Maps 502
18.10 Normal Coordinates 507
18.11 Jacobi Fields 509
<b>19 Semi-Riemannian Manifolds 515</b>
19.1 Semi-Riemannian Manifolds 515
19.2 Curves 519
19.3 Fundamental Theorem of Semi-Riemannian Manifolds 519
19.4 Flat Maps and Sharp Maps 526
19.5 Representation of Tensor Fields 529
19.6 Contraction of Tensor Fields 532
19.7 Isometries 535
19.8 Riemann Curvature Tensor 539
19.9 Geodesics 546
19.10 Volume Forms 550
19.11 Orientation of Hypersurfaces 551
19.12 Induced Connections 558
<b>20 Differential Operators on Semi-Riemannian Manifolds 561</b>
20.1 Hodge Star 561
20.2 Codifferential 562
20.3 Gradient 566
20.4 Divergence of Vector Fields 568
20.5 Curl 572
20.6 Hesse Operator 573
20.7 Laplace Operator 575
20.8 Laplace-de Rham Operator 576
20.9 Divergence of Symmetric 2-Covariant Tensor Fields 577
<b>21 Riemannian Manifolds 579</b>
21.1 Geodesics and Curvature on Riemannian Manifolds 579
21.2 Classical Vector Calculus Theorems 582
<b>22 Applications to Physics 587</b>
22.1 Linear Isometries on Lorentz Vector Spaces 587
22.2 Maxwell's Equations 598
22.3 Einstein Tensor 603
<b>IV Appendices 609</b>
<b>A Notation and Set Theory 611</b>
<b>B Abstract Algebra 617</b>
B.1 Groups 617
B.2 Permutation Groups 618
B.3 Rings 623
B.4 Fields 623
B.5 Modules 624
B.6 Vector Spaces 625
B.7 Lie Algebras 626
Further Reading 627
Index 629