Magnetic Fusion Energy

From Experiments to Power Plants
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 2. Juni 2016
  • |
  • 632 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100326-8 (ISBN)
 

Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants.

With the start of ITER construction, the world's magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades.

Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance.


  • Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments
  • Considers the pathway towards future development of magnetic fusion energy power plants
  • Contains experts contributions from editors and others who are well known in the field
  • Englisch
  • London
Elsevier Science
  • 30,17 MB
978-0-08-100326-8 (9780081003268)
0081003269 (0081003269)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Magnetic Fusion Energy
  • Related titles
  • Magnetic Fusion Energy
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Magnetic fusion issues
  • 1 - Introduction: the journey to magnetic fusion energy
  • 2 - Plasma performance, burn and sustainment
  • 2.1 Introduction
  • 2.2 Key fusion plasma physics areas related to performance, burn and sustainment
  • 2.3 Requirements for a fusion reactor
  • 2.4 The present status of physics research and future prospects
  • 2.4.1 Transport
  • 2.4.2 Stability
  • 2.4.3 a-Heating
  • 2.4.4 Tokamak operational scenarios
  • 2.5 Summary and outlook
  • References
  • 3 - Plasma exhaust
  • 3.1 Introduction
  • 3.2 Plasma exhaust
  • 3.2.1 Particle exhaust
  • 3.2.2 Power exhaust
  • 3.2.3 Momentum exhaust
  • 3.3 Transients and 3D effects on plasma exhaust
  • 3.3.1 Edge localized modes
  • 3.3.2 Disruptions and 3D asymmetries
  • 3.4 PMI and materials options
  • 3.4.1 PMI at the wall, and cross-field transport
  • 3.4.2 Considerations for plasma facing materials
  • 3.4.2.1 Solids
  • 3.4.2.2 Liquids
  • 3.5 Recent challenges
  • 3.5.1 Energy confinement with a metal wall
  • 3.5.2 Contraction of the divertor heat exhaust channel with poloidal field
  • 3.6 Outlook and summary
  • References
  • 4 - Power extraction and tritium self-sufficiency
  • 4.1 Introduction
  • 4.2 Power extraction
  • 4.2.1 Heating of plasma facing components
  • 4.2.2 Primary heat transfer system
  • 4.2.3 Balance of plant
  • 4.3 Tritium production
  • References
  • Two - Experiments: scientific foundations for ITER
  • 5 - ASDEX Upgrade
  • 5.1 Introduction
  • 5.2 The ASDEX Upgrade device
  • 5.3 Plasma wall interaction
  • 5.3.1 Tungsten plasma-facing components for ASDEX Upgrade
  • 5.3.2 Retention of gases with tungsten PFCs
  • 5.3.3 Tungsten sources and transport
  • 5.4 Pedestal and H-mode physics
  • 5.4.1 L-H transition
  • 5.4.2 Pedestal performance
  • 5.4.3 Operation at trans-Greenwald density
  • 5.4.4 Core transport
  • 5.5 Power exhaust
  • 5.5.1 Power decay length
  • 5.5.2 ELM mitigation with magnetic perturbations
  • 5.6 MHD modes and disruptions
  • 5.6.1 NTM suppression
  • 5.6.2 Disruption studies
  • 5.7 Scenario development
  • 5.7.1 ITER baseline operation
  • 5.7.2 Type I ELMy H-Modes at highest P/R values
  • 5.7.3 Scenarios at elevated central q
  • 5.8 Summary and outlook
  • Acknowledgements
  • References
  • 6 - The Tokamak Fusion Test Reactor
  • 6.1 Introduction
  • 6.2 TFTR design and capabilities
  • 6.2.1 Magnets
  • 6.2.2 Vacuum vessel, plasma-facing components, bakeout system, and other "conditioning" techniques
  • 6.2.3 Heating systems
  • 6.2.3.1 Neutral beam injection
  • 6.2.3.2 Ion cyclotron heating
  • 6.2.4 Fueling and impurity injection systems
  • 6.2.5 Tritium handling, delivery, and exhaust systems
  • 6.2.6 Tritium retention and removal
  • 6.2.7 Shielding
  • 6.2.8 Conduct of maintenance, installation, and final decommissioning
  • 6.2.9 Diagnostics
  • 6.3 TFTR operational regimes: requirements, characteristics and limitations
  • 6.3.1 Ohmically heated plasmas
  • 6.3.2 Neutral beam injection-heated plasmas
  • 6.3.2.1 L-mode
  • 6.3.2.2 Supershots in TFTR
  • 6.3.2.3 H-mode
  • 6.3.2.4 High internal inductance regime
  • 6.3.2.5 Reversed shear and enhanced reversed shear
  • 6.3.2.6 Detached plasmas and radiating mantles
  • 6.3.3 ICRF heated
  • 6.4 Main physics results from TFTR (not D-T specific)
  • 6.4.1 Thermal energy and particle confinement
  • 6.4.1.1 Confinement in ohmically heated plasmas
  • 6.4.1.2 Confinement of plasmas with dominant auxiliary heating
  • 6.4.1.3 Role of turbulent fluctuations
  • 6.4.1.4 Heat pulse propagation and perturbative transport studies
  • 6.4.2 Neoclassical resistivity, bootstrap current, and noninductive sustainment
  • 6.4.3 Fast-ion confinement and thermalization
  • 6.4.4 ICRF physics
  • 6.4.5 Stability and other operational limits
  • 6.4.5.1 Density
  • 6.4.5.2 Current
  • 6.4.5.3 Beta
  • Kink/ballooning mode
  • Neoclassical tearing modes
  • 6.4.5.4 Wall interactions
  • 6.4.5.5 Disruptions and their avoidance
  • 6.5 Results from the D-T experiments in TFTR
  • 6.5.1 Fusion power optimization
  • 6.5.2 Isotopic effects on confinement
  • 6.5.2.1 Energy confinement
  • 6.5.2.2 Particle confinement
  • 6.5.2.3 Fast-ion confinement
  • 6.5.3 Alpha particle confinement and thermalization
  • 6.5.4 Alpha heating
  • 6.5.5 Alpha-driven instabilities and their effects on alphas
  • 6.6 Summary
  • Acknowledgments
  • References
  • 7 - JT-60U
  • 7.1 Introduction
  • 7.2 Upgrade to JT-60U
  • 7.2.1 JT-60 and frontier work
  • 7.2.2 Upgrade to JT-60U and equipment enhancement
  • 7.3 Confinement innovation
  • 7.3.1 Advanced tokamak approaches
  • 7.3.2 High-ßp mode plasmas
  • 7.3.3 Sustainment of high-ßp mode plasmas
  • 7.3.4 Reversed shear mode plasmas
  • 7.3.5 Sustainment of reversed shear mode plasmas
  • 7.3.6 Improvement of H-mode plasmas
  • 7.3.6.1 Threshold power
  • 7.3.6.2 Grassy ELMs
  • 7.3.6.3 Effect of reduced fast ion loss
  • 7.3.6.4 Hybrid operation
  • 7.3.7 Active MHD stability control
  • 7.3.7.1 Neoclassical tearing mode suppression
  • 7.3.7.2 Resistive wall mode suppression
  • 7.3.8 Disruption mitigation
  • 7.4 Heat and particle control
  • 7.4.1 He ash exhaust
  • 7.4.2 Ar gas seeding
  • 7.4.3 Tungsten targets
  • 7.5 Heating and current drive
  • 7.5.1 N-NBI
  • 7.5.1.1 Extension of NNB system
  • 7.5.2 ECRF
  • 7.5.2.1 Extension of ECRF system
  • 7.6 Future directions
  • 7.6.1 Outlook for ITER and DEMO
  • 7.6.2 Upgrade to JT-60SA
  • 7.7 Conclusions
  • Acknowledgments
  • References
  • 8 - Joint European Torus
  • 8.1 Introduction
  • 8.2 Engineering for a fusion reactor
  • 8.3 Fusion diagnostics
  • 8.4 Disruptions
  • 8.5 Plasma-wall interactions
  • 8.6 Scrape-off layer and divertor physics
  • 8.7 Transport and confinement
  • 8.8 Stability
  • 8.9 High-fusion performance
  • 8.10 Fusion physics
  • Acknowledgement
  • References
  • 9 - Tore Supra-WEST
  • 9.1 Background and objectives of Tore Supra
  • 9.2 Plant overview
  • 9.3 Main achievements
  • 9.3.1 Superconducting magnet
  • 9.3.2 Development of actively cooled plasma facing components
  • 9.3.3 Heating and current drive systems
  • 9.3.4 Key ITER operational issues
  • 9.3.5 Ergodic divertor experiments
  • 9.3.6 Long pulse experiments
  • 9.4 Preparing ITER operation: the WEST project
  • 9.4.1 From limiter to divertor configuration
  • 9.4.2 From carbon to tungsten PFC
  • 9.4.3 Testing ITER divertor PFC in relevant tokamak conditions
  • 9.4.4 Long pulse H-mode operation in tungsten environment
  • 9.5 Conclusions and perspectives
  • References
  • 10 - Alcator C-Mod and the high magnetic field approach to fusion
  • 10.1 Introduction
  • 10.1.1 The advantages of high magnetic field for fusion
  • 10.1.2 Impact of high-field operation on C-Mod
  • 10.2 C-Mod engineering and technical innovations
  • 10.2.1 Magnets
  • 10.2.2 Internal hardware
  • 10.3 Divertor and boundary physics
  • 10.3.1 Operation with metal walls
  • 10.3.2 Divertor regimes
  • 10.3.3 Turbulence and anomalous transport in the boundary plasma
  • 10.4 Pedestal and edge barrier regimes
  • 10.4.1 H-modes
  • 10.4.2 I-modes
  • 10.5 Core turbulence and transport
  • 10.5.1 Self-generated flows and momentum transport
  • 10.5.2 Particle and impurity transport
  • 10.5.3 Energy transport
  • 10.6 ICRF technology and physics
  • 10.7 Implications and future directions for high-field tokamak research
  • Acknowledgments
  • References
  • Three - Experiments: developing the basis for going beyond ITER
  • 11 - National Spherical Torus eXperiment
  • 11.1 Introduction
  • 11.2 Transport and turbulence
  • 11.3 Macroscopic stability
  • 11.4 Energetic particles
  • 11.5 Boundary physics
  • 11.6 Solenoid-free operation and wave physics
  • 11.7 NSTX-Upgrade
  • References
  • 12 - The mega amp spherical tokamak
  • 12.1 The MAST device
  • 12.2 Key scientific achievements of 15years of MAST research
  • 12.2.1 Plasma confinement
  • 12.2.1.1 Access to high confinement (H-mode)
  • 12.2.1.2 Energy confinement
  • 12.2.1.3 Particle confinement and fuelling
  • 12.2.1.4 Momentum transport
  • 12.2.2 Pedestal and ELM physics
  • 12.2.2.1 The ELM crash
  • 12.2.2.2 Pedestal evolution
  • 12.2.2.3 ELM control
  • 12.2.3 Fast-ion physics and current drive
  • 12.2.3.1 Alfvén instabilities
  • 12.2.3.2 Effect of MHD modes on fast ions
  • 12.2.3.3 Neutral beam current drive
  • 12.2.4 Scrape-off layer and exhaust physics
  • 12.2.4.1 Target heat loads
  • 12.2.4.2 SOL transport
  • 12.2.5 Macroscopic stability
  • 12.2.5.1 The internal n=1 kink mode
  • 12.2.5.2 Sawtooth physics
  • 12.2.5.3 NTM physics
  • 12.2.5.4 Disruptions
  • 12.2.6 Plasma start-up
  • 12.2.6.1 Merging compression start-up
  • 12.2.6.2 ECRH/EBW start-up and heating
  • 12.3 The upgrade to MAST
  • 12.3.1 A staged approach toward a future ST
  • 12.3.2 MAST-U as divertor test facility
  • 12.3.3 Toward a fully noninductive flat top
  • 12.3.3.1 The neutral beam current drive system
  • 12.3.3.2 The EBW current drive potential
  • References
  • 13 - Experimental advanced superconducting tokamak
  • 13.1 EAST mission and orientation
  • 13.1.1 Overview
  • 13.1.2 EAST mission and orientation
  • 13.2 Main progress and achievements on the EAST tokamak
  • 13.2.1 Development of high-performance long-pulse operation
  • 13.2.2 Main progresses in RF physics
  • 13.2.3 MHD instabilities and error field studies on EAST
  • 13.2.4 Boundary and pedestal optimization for high-performance long-pulse studies
  • 13.2.4.1 Edge and pedestal physics
  • 13.2.4.2 Control of edge-localized modes
  • 13.2.4.3 Divertor and SOL physics
  • 13.2.4.4 Synergetic effect of LHW and SMBI on divertor heat flux distribution
  • 13.2.5 Studies of plasma-material interactions using the material and plasma evaluation system
  • 13.3 Future contributions to closing gaps for fusion reactor
  • 13.3.1 Integrated advanced-operation scenario for the fusion reactor
  • 13.3.1.1 Scenario development for low toroidal rotation, high ßp, steady-state core plasma operation
  • 13.3.1.2 Edge solutions
  • Active control of stationary divertor heat flux
  • Mitigation of transient divertor heat flux
  • 13.3.2 Engineering and technologies toward fusion reactor
  • 13.3.2.1 Superconducting conductors
  • 13.3.2.2 Power supply
  • 13.3.2.3 Feeder system
  • 13.3.2.4 Large superconducting magnet application
  • 13.3.2.5 Key materials for fusion reactor application
  • References
  • 14 - JT-60SA
  • 14.1 Project mission
  • 14.2 Roles of JT-60SA for ITER and DEMO
  • 14.3 Characteristics of the device and plasma parameters
  • 14.3.1 Superconducting toroidal field coils (procured by F4E, ENEA, CEA, SCK CEN)
  • 14.3.2 Superconducting poloidal field coils (procured by JAEA)
  • 14.3.3 High-temperature superconducting current leads (procured by KIT)
  • 14.3.4 Vacuum vessel (procured by JAEA)
  • 14.3.5 Cryostat (procured by CIEMAT, JAEA)
  • 14.3.6 Cryogenic systems (procured by CEA, F4E)
  • 14.3.7 Power supply systems (procured by CNR-RFX, ENEA, CEA, JAEA)
  • 14.3.8 Heating system (procured by JAEA)
  • 14.3.9 Divertor (procured by JAEA)
  • 14.3.10 Stabilizing plates and in-vessel coils (procured by JAEA)
  • 14.3.11 Variety of high-resolution diagnostics
  • 14.4 JT-60SA research regimes
  • 14.4.1 Plasma parameters of representative scenarios and integrated plasma performances
  • 14.4.2 Central subjects of the plasma research characterized by ITER and DEMO-relevant nondimensional parameters and plasma heatin ...
  • 14.4.2.1 Confinement and transport
  • 14.4.2.2 Edge pedestal and edge-localized modes
  • 14.4.2.3 MHD stability
  • 14.4.2.4 High-energy particle physics
  • 14.4.2.5 SOL, divertor and plasma-material interaction
  • 14.4.3 Plasma controllability
  • 14.4.4 Burn simulation at high-ß and high-bootstrap fraction
  • 14.4.5 Research on fusion engineering
  • 14.4.6 Research phases of JT-60SA
  • 14.4.6.1 Initial research phase
  • 14.4.6.2 Integrated research phase
  • 14.4.6.3 Extended research phase
  • 14.5 Summary
  • Acknowledgements
  • References
  • 15 - Large helical device
  • 15.1 Mission and goals of the LHD project
  • 15.2 Design concept of LHD
  • 15.3 Plasma production and heating
  • 15.3.1 Electron cyclotron resonance heating
  • 15.3.2 Neutral beam injection heating
  • 15.3.3 Ion cyclotron range of frequency heating
  • 15.3.4 Plasma initiation by NB
  • 15.4 Characteristics of LHD plasma
  • 15.4.1 Position of magnetic axis
  • 15.4.2 Energy confinement
  • 15.4.3 Confinement of high-energy ions
  • 15.4.4 Particle confinement
  • 15.4.5 Stability and equilibrium
  • 15.4.6 Plasma edge physics
  • 15.4.7 Long-pulse operation and plasma wall interaction
  • 15.4.8 New trend of transport study (nonlinear, nondiffusive, nonlocal)
  • 15.5 Engineering performance of LHD
  • 15.5.1 Cryogenic system
  • 15.5.2 Negative ion-based NBI
  • 15.6 Prospects for fusion power plant from the LHD
  • 15.6.1 Design of heliotron fusion power plant: FFHR
  • 15.6.2 Engineering issues and R&Ds for the FFHR
  • 15.7 Summary
  • References
  • 16 - Wendelstein 7-X
  • 16.1 The stellarator concept
  • 16.2 The physics goals of Wendelstein 7-X
  • 16.3 The optimized stellarator Wendelstein 7-X
  • 16.4 Construction of Wendelstein 7-X
  • 16.5 Initial research phases on Wendelstein 7-X
  • 16.6 Summary
  • References
  • Four - Key technological elements of magnetic fusion energy power plants and future fusion power plants
  • 17 - Heating, current drive and fuelling of magnetic fusion power plants
  • 17.1 Introduction
  • 17.2 Heating, current drive and fuelling roles
  • 17.3 Heating and current drive system requirements for power plants
  • 17.3.1 Electron cyclotron systems
  • 17.3.2 Ion cyclotron systems
  • 17.3.3 Neutral beam systems
  • 17.3.4 Lower hybrid systems
  • 17.3.5 Technology gaps for heating and current drive systems
  • 17.3.6 Prospects
  • 17.4 Fuelling systems for power plants
  • 17.4.1 Pellet injection technology
  • 17.4.2 Supersonic gas injection
  • 17.4.3 Compact toroid technology
  • 17.4.4 Unmagnetized plasma jet
  • 17.4.5 Technology gaps
  • 17.4.5.1 Safety
  • 17.4.5.2 Edge-localized mode triggering
  • 17.4.5.3 Tritium pellets
  • 17.4.5.4 Flight systems
  • 17.4.5.5 Compact toroid
  • 17.4.6 Prospects
  • 17.5 Summary and conclusion
  • References
  • 18 - Diagnostics for magnetic fusion power plants
  • 18.1 Introduction
  • 18.2 Current applications
  • 18.2.1 Basic and advanced control
  • 18.2.2 Existing techniques
  • 18.2.2.1 Measurements of plasma current, position, shape (equilibrium), stored energy, magnetic fluctuations, coil currents
  • Magnetics
  • Motional stark effect (MSE)
  • Polarimetry
  • 18.2.2.2 Measurements of density and temperatures
  • Interferometry
  • Thomson scattering
  • Electron cyclotron emission
  • Charge-exchange recombination spectroscopy (CER or CXRS)
  • 18.2.2.3 Measurements of radiation
  • Bolometry
  • Spectrometry
  • 18.3 Measurement needs for power plants
  • Outline placeholder
  • Outline placeholder
  • Measurement Needs
  • 18.4 Environmental and contextual constraints
  • 18.4.1 Environmental constraints
  • 18.4.1.1 Radiation flux
  • 18.4.1.2 Radiation fluence
  • 18.4.1.3 Particle fluences
  • 18.4.1.4 Relativistic effects
  • 18.4.1.5 Stray microwave absorption
  • 18.4.1.6 Large background and reflective first wall
  • 18.4.2 Contextual constraints
  • 18.4.2.1 Access
  • 18.4.2.2 Shielding
  • 18.4.2.3 Containment
  • 18.4.2.4 Availability
  • 18.4.2.5 Neutral beam-based diagnostics
  • 18.5 Outlook to potential system implementations
  • Outline placeholder
  • Outline placeholder
  • Design Considerations
  • 18.6 Summary
  • Acknowledgments
  • References
  • 19 - Stellarator fusion power plants
  • 19.1 Introduction
  • 19.2 The force-free helical reactor
  • 19.3 The helical-axis advanced stellarator reactor
  • 19.4 The compact stellarator
  • 19.5 Summary and prospects
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • L
  • M
  • N
  • P
  • R
  • S
  • T
  • U
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

243,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok