Handbook of Low Carbon Concrete

 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 30. September 2016
  • |
  • 442 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-804540-4 (ISBN)
 

Handbook of Low Carbon Concrete brings together the latest breakthroughs in the design, production, and application of low carbon concrete. In this handbook, the editors and contributors have paid extra attention to the emissions generated by coarse aggregates, emissions due to fine aggregates, and emissions due to cement, fly ash, GGBFS, and admixtures.

In addition, the book provides expert coverage on emissions due to concrete batching, transport and placement, and emissions generated by typical commercially produced concretes.


  • Includes the tools and methods for reducing the emissions of greenhouse gases
  • Explores technologies, such as carbon capture, storage, and substitute cements
  • Provides essential data that helps determine the unique factors involved in designing large, new green cement plants


Ali Nazari is a Professor at Centre for Sustainable Infrastructure, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, 3122, Australia
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 17,09 MB
978-0-12-804540-4 (9780128045404)
012804540X (012804540X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Handbook of Low Carbon Concrete
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • 1 Greenhouse Gas Emissions Due to Concrete Manufacture
  • 1.1 Introduction
  • 1.2 Methodology
  • 1.3 Emissions Due to Coarse Aggregates
  • 1.4 Emissions Due to Fine Aggregates
  • 1.5 Emissions Due to Cement, Fly Ash, GGBFS, and Admixtures
  • 1.6 Emissions Due to Concrete Batching, Transport, and Placement
  • 1.7 Summary of CO2 Emissions
  • 1.8 Emissions Generated by Typical Commercially Produced Concretes
  • 1.9 Case Study: The Role of Concrete in Sustainable Buildings
  • 1.10 Conclusions
  • 1.11 Recommendations and Perspectives
  • Acknowledgments
  • References
  • 2 Life Cycle CO2 Evaluation on Reinforced Concrete Structures With High-Strength Concrete
  • 2.1 Introduction
  • 2.2 Method of Evaluating Environmental Load for the Life Cycle of Building
  • 2.2.1 Construction Stage
  • 2.2.1.1 Material Production Step
  • 2.2.1.2 Transportation Step
  • 2.2.1.3 Construction Work Step
  • 2.2.2 Use/Maintenance Stage
  • 2.2.3 Removal/Disposal Stage
  • 2.3 Evaluating Environmental Load by the Application of High-Strength Concrete
  • 2.3.1 Evaluation Method
  • 2.3.1.1 Materials Production Step
  • 2.3.1.2 Transportation Step
  • 2.3.1.3 Construction Work Step
  • 2.3.1.4 Use Step
  • 2.3.1.5 Maintenance Step
  • 2.3.1.6 Removal Step and Disposal Step
  • 2.3.2 Selection of High-Strength Concrete
  • 2.3.3 Calculation of Quantity Reduction Effect by Application of High-Strength Concrete
  • 2.3.4 Calculation of Building Lifespan
  • 2.4 The Results of Environmental Performance by the Application of High-Strength Concrete
  • 2.4.1 Energy Consumption and CO2 Emission in Construction Stage
  • 2.4.2 Energy Consumption and CO2 Emission for Life Cycle
  • 2.5 Conclusions
  • References
  • 3 Assessment of CO2 Emissions Reduction in High-Rise Concrete Office Buildings Using Different Material-Use Options
  • 3.1 Introduction
  • 3.2 System Definitions and Boundaries
  • 3.3 Methodology
  • 3.3.1 Identify the Types and Quantities of Materials for Building Elements
  • 3.3.2 CO2 Emissions Associated with Building Materials
  • 3.3.3 Applying the Monte Carlo Method for CO2 Emission Prediction
  • 3.3.4 Material-Use Options
  • 3.3.5 Calculation Methods for Different Material-Use Options
  • 3.3.5.1 Importing Regional Materials
  • 3.3.5.2 Maintaining the Existing Structural and Nonstructural Building Elements
  • 3.3.5.3 Reusing Existing Resources
  • 3.3.5.4 Diverting Construction Wastes to Recycling
  • 3.3.5.5 Offsite Fabricated Materials
  • 3.4 Results and Analysis
  • 3.4.1 CO2 Emissions from Building Elements
  • 3.4.2 Impact of Different Material-Use Options
  • 3.5 Discussions and Conclusions
  • References
  • 4 Eco-Friendly Concretes With Reduced Water and Cement Content: Mix Design Principles and Experimental Tests
  • 4.1 Concrete for Eco-Friendly Structures
  • 4.2 Principles for the Development of Eco-Friendly Concretes With Low Environmental Impacts
  • 4.2.1 Generals
  • 4.2.2 Low-Carbon Concretes With Reduced Cement Contents
  • 4.3 Laboratory Tests
  • 4.3.1 Overview and Targets
  • 4.3.2 Constituents and Concrete Mix Design
  • 4.3.3 Test Methods
  • 4.4 Concrete Properties
  • 4.4.1 Workability and Strength Development
  • 4.4.2 Carbonation of the Concrete
  • 4.4.3 Environmental Performance Evaluation
  • 4.5 Application in Practice
  • 4.6 Conclusions
  • Acknowledgments
  • References
  • 5 Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions From Concrete
  • 5.1 Introduction
  • 5.2 Life-Cycle CO2 Assessment Procedure for Concrete
  • 5.2.1 Objective and Scope
  • 5.2.2 LCI Database
  • 5.2.3 CO2 Assessment Procedure
  • 5.3 Database of Concrete Mix Proportions
  • 5.3.1 Effect of SCMs on Bi
  • 5.3.2 Effect of SCMs on Ci
  • 5.3.3 Relation of Bi and Ci
  • 5.3.4 Determination of Unit Binder Content
  • 5.4 Design of SCMs to Reduce CO2 Emissions During Concrete Production
  • 5.5 Conclusions
  • Acknowledgments
  • References
  • 6 Binder and Carbon Dioxide Intensity Indexes as a Useful Tool to Estimate the Ecological Influence of Type and Maximum Agg ...
  • 6.1 Introduction
  • 6.2 Environmental Friendliness in Civil Engineering
  • 6.2.1 Conception of Binder and Carbon Intensity Indexes
  • 6.2.2 Sustainable Technology for HSC
  • 6.3 Materials and Methods
  • 6.3.1 Cement
  • 6.3.2 Aggregate
  • 6.3.3 Superplasticizer and Air-Entraining Agent
  • 6.3.4 Microsilica
  • 6.3.5 Concrete Mix Recipes
  • 6.3.6 Testing Procedure
  • 6.4 Results and Discussion
  • 6.4.1 Air Content and Density
  • 6.4.2 Water Absorption
  • 6.4.3 Compressive Strength
  • 6.4.4 Binder and Carbon Dioxide Indexes
  • 6.4.5 Influence of Freeze-Thaw Cycles
  • 6.5 Conclusions
  • Acknowledgments
  • References
  • 7 CO2 Reduction Assessment of Alkali-Activated Concrete Based on Korean Life-Cycle Inventory Database
  • 7.1 Introduction
  • 7.2 Assessment Procedure of CO2
  • 7.2.1 LCI Database
  • 7.2.2 CO2 Evaluation Procedure
  • 7.2.3 Examples for CO2 Assessment
  • 7.2.4 Comparisons of CO2 Footprints According to Different Concrete Types
  • 7.2.5 Comparisons of CO2 Footprints in the Secondary Concrete Products
  • 7.3 Performance Efficiency Indicator of Binder
  • 7.3.1 Binder Intensity
  • 7.3.2 CO2 Intensity
  • 7.4 Further Investigations
  • 7.5 Conclusions
  • Acknowledgments
  • References
  • 8 Introducing Bayer Liquor-Derived Geopolymers
  • 8.1 Introduction
  • 8.1.1 The Geopolymer Industry
  • 8.1.2 The Alumina Industry
  • 8.1.3 Industrial Synergy
  • 8.1.4 Carbon and Embodied Energy
  • 8.2 Process and Materials
  • 8.2.1 Characterization of Materials
  • 8.2.2 Bayer-Derived Geopolymer Synthesis
  • 8.3 Comparison of Embodied Energy of OPC with Bayer-Derived Geopolymer
  • 8.3.1 Base Assumptions
  • 8.3.1.1 Embodied Energy Calculation
  • 8.3.1.2 Embodied Energy of Bayer Liquor Feedstock
  • 8.3.2 Results and Discussion
  • 8.3.2.1 Embodied Energy of Concrete Formulations
  • 8.3.2.2 Embodied Energy of Binding Agent
  • 8.3.3 Bayer Liquor as a Waste Product
  • 8.3.4 Embodied Energy Implications
  • 8.3.5 Embodied Energy Conclusions
  • 8.4 Development of Bayer-Derived Geopolymers
  • 8.4.1 Ambient Curing: The Impact of Calcium and Fly Ash Sources
  • 8.4.2 Aggregate Production: A Low-Risk, High-Volume Strategic Market
  • 8.4.3 Aggregate Production: Possible Production Design
  • 8.4.4 Aggregate Production: Embodied Energy
  • 8.4.5 Aggregate Consumption: Bayer-Derived Geopolymer Aggregates Utilized in OPC Concrete
  • 8.4.6 Product Application Conclusions
  • Acknowledgments
  • References
  • 9 Alkali-Activated Cement-Based Binders (AACBs) as Durable and Cost-Competitive Low-CO2 Binder Materials: Some Shortcomings ...
  • 9.1 Introduction
  • 9.2 AACB Cost Efficiency
  • 9.3 Carbon Dioxide Emissions of AACB
  • 9.4 Some Important Durability Issues of AACBs
  • 9.4.1 Efflorescences
  • 9.4.2 ASR of AACBs
  • 9.4.3 Corrosion of Steel Reinforcement in AACBs
  • 9.5 Conclusions and Future Trends
  • References
  • 10 Progress in the Adoption of Geopolymer Cement
  • 10.1 Introduction
  • 10.2 The Role of Chemical Research in the Commercialization of Geopolymers
  • 10.3 Developments in Geopolymer Gel-Phase Chemistry
  • 10.3.1 Precursor Design
  • 10.3.2 Binder-Phase Chemistry
  • 10.3.3 Modeling of Phase Assemblage
  • 10.4 Role of Particle Technology in the Optimization of Geopolymer Paste and Concrete
  • 10.4.1 Particle-Shape Effects in Fresh Pastes
  • 10.4.2 Water-Binder Ratio and Rheology of Geopolymer Pastes
  • 10.4.3 Particle Packing and Mix Design in Geopolymer Concretes
  • 10.5 Linking Geopolymer Binder Structure and Durability
  • 10.5.1 Factors Affecting the Service Life of Reinforced Concrete
  • 10.5.2 Microcracking Phenomena
  • 10.5.3 Interfacial Transition Zone Effects
  • 10.5.4 Microporosity in the Bulk of the Geopolymer Binder
  • 10.6 Technical Challenges
  • 10.7 Reduction in Carbon Emissions
  • 10.8 Standards Framework
  • 10.9 Testing for Durability
  • 10.10 Supply Chain Risks
  • 10.11 Perspectives on Commercialization
  • 10.12 Final Remarks
  • Acknowledgments
  • References
  • 11 An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived From Industrial Byprod ...
  • 11.1 Introduction
  • 11.2 Effect of Chemical Activators and Curing Regime on the Mechanical, Durability, Shrinkage, Microstructure, and Physical ...
  • 11.2.1 Mechanical Properties
  • 11.2.2 Dimensional Stability and Durability Properties
  • 11.2.3 Microstructure of Geopolymer Matrix
  • 11.2.4 Rheological and Physical Properties of Geopolymer
  • 11.3 Effect of Particle-Size Distribution of Binder Phase and Additives on the Properties of Geopolymer
  • 11.3.1 Mechanical Properties
  • 11.3.2 Rheological and Physical Properties of Geopolymer
  • 11.3.3 Microstructure of Geopolymer Matrix
  • 11.3.4 FTIR Analysis
  • 11.4 The Effect of Aggressive Environmental Exposure on Properties of Geopolymers
  • 11.4.1 Mechanical Properties
  • 11.4.2 Microstructure Analysis of Geopolymer
  • 11.4.3 FTIR Analysis
  • 11.4.4 Thermogravimetry Analysis
  • 11.4.5 Physical Properties of Geopolymer
  • 11.5 The Effect of Water Content and Forming Pressure on the Properties of Geopolymers
  • 11.5.1 Mechanical Properties
  • 11.5.2 Water Absorption
  • 11.6 Blended Geopolymer
  • 11.6.1 Mechanical Properties
  • 11.6.2 Microstructure of Geopolymer Matrix
  • 11.6.3 Dimensional Stability
  • 11.7 Summary of the Current Body of Knowledge and Discussions
  • 11.8 Conclusions
  • References
  • 12 Performance on an Alkali-Activated Cement-Based Binder (AACB) for Coating of an OPC Infrastructure Exposed to Chemical ...
  • 12.1 Introduction
  • 12.2 Experimental Work
  • 12.2.1 Materials, Mix Design, Mortar and Concrete Mixing, and Concrete Coating
  • 12.3 Experimental Procedures
  • 12.3.1 Compressive Strength
  • 12.3.2 Water Absorption by Immersion
  • 12.3.3 Capillary Water Absorption
  • 12.3.4 Resistance to Chemical Attack
  • 12.4 Results and Discussion
  • 12.4.1 Compressive Strength
  • 12.4.2 Water Absorption by Immersion
  • 12.4.3 Capillary Water Absorption
  • 12.4.4 Resistance to Chemical Attack
  • 12.4.4.1 Resistance to Sulfuric Acid Attack
  • 12.4.4.2 Resistance to Nitric Acid Attack
  • 12.4.4.3 Resistance to Hydrochloric Acid Attack
  • 12.5 Cost Analysis
  • 12.6 Conclusions
  • References
  • 13 Alkali-Activated Cement (AAC) From Fly Ash and High-Magnesium Nickel Slag
  • 13.1 Introduction
  • 13.2 Manufacture of AACs
  • 13.2.1 Materials
  • 13.2.2 AAC Manufacture and Characterization
  • 13.3 Properties of AACs
  • 13.3.1 Compressive Strength
  • 13.3.2 Microstructure of AACs
  • 13.3.3 Pore-Size Distribution
  • 13.3.4 XRD Analysis
  • 13.3.5 Drying Shrinkage
  • 13.4 Sustainability of AACs
  • Conclusions
  • References
  • 14 Bond Between Steel Reinforcement and Geopolymer Concrete
  • 14.1 Introduction
  • 14.2 Experimental Program
  • 14.2.1 GPC Mixes and Curing Regime
  • 14.2.2 Reference OPC-Based Concrete
  • 14.2.3 Testing Methods
  • 14.3 Experimental Results
  • 14.3.1 Mechanical Characteristics
  • 14.3.2 Low-Calcium FA GPC Bond Test Results
  • 14.4 Model for Bond Strength Prediction of GPC
  • 14.5 Conclusions
  • Acknowledgments
  • References
  • 15 Boroaluminosilicate Geopolymers: Current Development and Future Potentials
  • 15.1 Introduction
  • 15.2 Experimental Procedure
  • 15.3 Results and Discussion
  • 15.3.1 Compressive Strength
  • 15.3.2 Microstructure
  • 15.3.3 FTIR Analysis Results
  • 15.4 Conclusions
  • 15.5 Future Potential Studies
  • 15.5.1 Materials
  • 15.5.1.1 Aluminosilicate Source
  • 15.5.1.2 Alkali Activator (Borax + NaOH)
  • 15.5.1.3 Other Materials
  • 15.5.2 Experiments
  • 15.5.2.1 Experiments to Determine Physical and Rheological Properties
  • 15.5.2.2 Experiments to Determine Chemical Properties
  • 15.5.2.3 Experiments to Determine Mechanical Properties
  • 15.5.2.4 Experiments to Determine Thermal Properties
  • 15.5.2.5 Evaluation of Microstructure
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

115,37 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok