Electricity and Magnetism

 
 
Dover Publications (Verlag)
  • erschienen am 9. Februar 2015
  • |
  • 640 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-486-80299-2 (ISBN)
 
This outstanding text for a two-semester course is geared toward physics undergraduates who have completed a basic first-year physics course. The coherent treatment offers several notable features, including 300 detailed examples at various levels of difficulty, a self-contained chapter on vector algebra, and a single chapter devoted to radiation that cites interrelationships between various analysis methods. Starting with chapters on vector analysis and electrostatics, the text covers electrostatic boundary value problems, formal and microscopic theories of dielectric electrostatics and of magnetism and matter, electrostatic energy, steady currents, and induction. Additional topics include magnetic energy, circuits with nonsteady currents, Maxwell's equations, radiation, electromagnetic boundary value problems, and the special theory of relativity. Exercises appear at the end of each chapter and answers to odd-numbered problems are included in one of several helpful appendixes.
weitere Ausgaben werden ermittelt
Munir H. Nayfeh and Morton K. Brussel
  • Cover
  • Title page
  • Copyright
  • Dedication
  • Preface
  • Contents
  • *One: Vector Analysis
  • 1.1 Properties of Vectors and Coordinate Systems
  • 1.1.1 Base Vectors and Coordinate Systems
  • 1.1.2 The Scalar Product (Dot Product)
  • 1.1.3 The Vector Product (Cross Product)
  • 1.2 Elements of Displacement, Area, and Volume
  • Solid Angle
  • 1.2.1 Element of Displacement
  • 1.2.2 Element of Surface Area
  • 1.2.3 Solid Angle
  • 1.2.4 Element of Volume
  • 1.3 Gradient
  • 1.4 The Divergence of a Vector and Gauss' Theorem
  • 1.5 The Curl and Stokes' Theorem
  • 1.6 Vector Manipulation of ?
  • 1.6.1 Single Del Operations
  • 1.6.2 Double Del Operations
  • 1.7 Vector Integral Relations
  • 1.8 Summary
  • Two: Electrostatics
  • 2.1 Electric Charge
  • 2.2 Coulomb's Law
  • 2.3 Electric Field
  • 2.4 Charge Density
  • 2.5 Flux and Gauss' Law
  • 2.5.1 Integral Form of Gauss' Law
  • 2.5.2 Derivative Form of Gauss' Law
  • 2.6 Conductors and Insulators
  • 2.7 Electric Potential
  • 2.8 The Multipole Expansion
  • 2.9 Summary
  • Three: Electrostatic Boundary Value Problems
  • 3.1 Poisson's and Laplace's Equations
  • 3.2 Uniqueness of Solutions to Electrostatic Problems
  • 3.3 Boundary Conditions
  • 3.4 Problems Involving Laplace's Equation
  • 3.4.1 Laplace's Equation in One Dimension
  • 3.4.2 Laplace's Equation in Two Dimensions-Spherical Coordinates
  • 3.4.3 Laplace's Equation in Two Dimensions-Cylindrical Coordinates
  • 3.4.4 Laplace's Equation in Three Dimensions-Rectangular Coordinates
  • 3.5 The Method of Images
  • 3.5.1 Point Charge and Plane
  • 3.5.2 Point Charge and Sphere
  • 3.5.3 Parallel Cylinders
  • 3.5.4 Point Charge and Two Conducting Surfaces
  • 3.6 Poisson's Equation
  • 3.7 Electrostatic Shielding
  • 3.8 Summary
  • Four: Formal Theory of Dielectric Electrostatics
  • 4.1 Polarization and Dipole Moment Density
  • 4.2 Fields Due to a Dielectric Medium
  • 4.3 Gauss' Law for Dielectrics
  • 4.4 The Equations of Electrostatics Inside Dielectrics
  • 4.5 The Electric Constitutive Relations
  • 4.6 The Solution of Electrostatic Boundary Value Problems with Dielectrics
  • 4.6.1 Uniqueness
  • 4.6.2 Boundary Conditions for Dielectric Media
  • *4.7 Method of Images for Dielectric Interfaces
  • 4.8 Forces on Charge Distributions
  • 4.9 Summary
  • *Five: The Microscopic Theory of Dielectrics
  • 5.1 The Molecular Field
  • 5.2 Interaction of Atoms and Molecules with Electric Fields
  • 5.2.1 Induced Dipoles
  • 5.2.2 Permanent Dipoles
  • 5.2.3 Ferroelectricity
  • 5.3 Summary
  • Six: Electrostatic Energy
  • 6.1 Electrostatic Energy of an Assembly of Point Charges
  • 6.2 Electrostatic Energy of a Continuous Charge Distribution
  • 6.3 Electrostatic Energy of Conductors
  • Coefficients of Potential and Capacitance
  • 6.4 Capacitors
  • 6.4.1 Capacitance of an Isolated Conductor
  • 6.4.2 The Two-Conductor Capacitor
  • 6.4.3 Combinations of Capacitors
  • 6.4.4 Energy Storage in Capacitors
  • 6.5 Electrostatic Energy: An Alternative Expression in Terms of the Field Distribution
  • 6.6 Self-Energies and Interaction Energies
  • 6.7 Forces and Torques Using the Electrostatic Energy
  • 6.8 Summary
  • *Seven: Steady Currents
  • 7.1 Definition of Electric Current
  • 7.2 The Continuity Equation: Local Conservation of Charge
  • 7.3 Ohm's Law
  • 7.4 Steady Currents
  • 7.4.1 Equations Governing J
  • 7.4.2 The Boundary Conditions
  • 7.4.3 Boundary Value Problems
  • 7.5 The Coefficients of Resistance
  • *7.6 The Method of Images for Currents
  • *7.7 Microscopic Origin of Conduction
  • *7.8 Joule Heating and Batteries
  • *7.9 Kirchhoff's Laws and Resistive Networks
  • 7.10 Summary
  • Eight: Magnetism of Steady Currents
  • 8.1 The Lorentz Force
  • 8.2 Forces on Current Distribution-Motion in Crossed Fields
  • 8.3 The Sources of B
  • 8.4 Integral Equations of Magnetostatics and Ampere's Law
  • 8.5 The Vector Potential
  • 8.6 The Biot-Savart Law
  • 8.7 The Magnetic Scalar Potential
  • 8.8 Magnetic Effects of a Small Current Loop
  • 8.8.1 The Scalar Potential
  • 8.8.2 Magnetic Moments
  • 8.8.3 The Vector Potential
  • 8.8.4 Localized Current Distributions in an External Magnetic Field
  • 8.9 Summary
  • Nine: Formal Theory of Magnetism and Matter
  • 9.1 Magnetization
  • 9.2 The Vector and Scalar Potentials of a Magnetized Material
  • 9.3 The Equations of Macroscopic Magnetostatistics
  • 9.4 The Magnetic Constitutive Relations
  • 9.5 Boundary Value Problems
  • 9.5.1 The Potential Equations
  • 9.5.2 The Boundary Conditions on the Fields and the Potentials
  • *9.6 The Method of Images for Magnetic Interfaces
  • *9.7 Magnetic Circuits
  • 9.8 Summary
  • *Ten: The Microscopic Theory of Magnetism
  • 10.1 The Interaction of Atoms and Molecules with Magnetic Fields
  • 10.2 The Origin of Diamagnetism-Induced Dipole Moments
  • 10.3 Paramagnetism-Permanent Moments
  • 10.4 Ferromagnetism
  • 10.4.1 Spin-Spin (Exchange) Interaction
  • 10.4.2 The Molecular Field
  • 10.4.3 Spontaneous Magnetization
  • 10.4.4 The Magnetic Susceptibility of Ferromagnetic Materials Above the Curie Temperature-The Curie-Weiss Law
  • 10.4.5 Ferromagnetic Domains
  • 10.4.6 Antiferromagnetism and Ferrimagnetism (Ferrite)
  • 10.5 Summary
  • *Eleven: Induction
  • 11.1 Faraday's Law
  • 11.2 Motional EMF
  • 11.3 Applications of Faraday's Law to Circuits: Coefficients of Inductance
  • 11.3.1 Mutual Inductance
  • 11.3.2 Self-Inductance-Inductances in Series and in Parallel
  • 11.4 Summary
  • Twelve: Magnetic Energy
  • 12.1 A Current Loop Immersed in a Linear Magnetic Material
  • 12.2 N Loops Immersed in a Linear Magnetic Medium
  • 12.3 Energy Stored in a Magnetic Field in the Presence of Linear Materials
  • 12.4 Magnetic Energy in Nonlinear Materials
  • 12.5 Forces and Torques Using the Magnetostatic Energy
  • 12.6 Summary
  • "Thirteen: Circuits with Nonsteady Currents
  • 13.1 Definition of Quasi-Static Circuits
  • 13.2 Kirchhoff's Circuit Laws
  • 13.3 Time Domain Solutions
  • 13.3.1 Series RL Loop
  • 13.3.2 Series RC Loop
  • 13.3.3 The RLC Loop
  • 13.4 Coupled Circuits
  • 13.5 AC Circuits-Frequency Domain
  • 13.5.1 Phasors-Kirchhoff's Laws for Phasors
  • 13.5.2 The Mesh Law
  • 13.5.3 The Nodal Method
  • 13.6 Power in AC Circuits-Impedence Matching
  • 13.7 Resonance in AC Circuits
  • 13.7.1 Series Resonance
  • 13.7.2 Parallel Resonance
  • 13.8 Summary
  • Fourteen: Maxwell's Equations
  • 14.1 Displacement Current-Maxwell's Equations
  • 14.2 Uncoupling Maxwell's Equations in Linear Media-The Wave Equation
  • 14.3 Plane Waves in Nonconducting Media
  • 14.3.1 The Wave Phenomenon
  • 14.3.2 Interrelationships Between E, B, and K
  • 14.4 Sinusoidal (Monochromatic) Solutions to Maxwell's Equations
  • 14.5 Polarization of Plane Waves
  • 14.6 Conservation of Electromagnetic Energy-Poynting's Theorem
  • 14.7 Plane Monochromatic Waves in a Conducting Medium
  • 14.8 Summary
  • Fifteen: Radiation
  • 15.1 Wave Equation of the Potentials with Sources-Gauge Transformations
  • 15.2 Retarded Potentials
  • 15.3 Spherical Waves and Field Wave Equations-Multipole Expansion for Slowly Moving Distributions
  • 15.4 Radiation from Antennas
  • 15.4.1 Differential Antennas-Electric Dipole Fields
  • 15.4.2 Radiation from a Half-Wave Antenna
  • 15.5 Multipole Expansion of the Retarded Potentials-Radiation 499 from Slowly Moving Charges-Electric Dipole
  • 15.6 The Lienard-Weichert Potential-Fast-Moving Point Charges
  • 15.7 Summary
  • Sixteen: Electromagnetic Boundary Value Problems
  • 16.1 Boundary Conditions on the Fields
  • 16.1.1 Special Cases: Normal Component
  • 16.1.2 Special Cases: Tangential Component
  • 16.2 Propagation Across a Plane Interface of Nonconducting (Dielectric) Materials
  • 16.2.1 Normal Incidence
  • 16.2.2 Oblique Incidence-Phase Matching
  • 16.2.3 Polarization by Reflection and Refraction-Brewster Angle
  • 16.3 Propagation Across a Plane Interface of a Conductor and a Dielectric-Complex Fresnel Coefficients
  • 16.3.1 Normal Incidence
  • 16.3.2 Oblique Incidence
  • 16.4 Waveguides and Cavity Resonators
  • 16.4.1 Propagation Between Two Conducting Plates (Metallic Mirrors)
  • 16.4.2 Waveguides
  • 16.4.3 Cavity Resonators
  • 16.5 Summary
  • Seventeen: The Special Theory of Relativity
  • *17.1 Galilean Transformation and the Wave Equation
  • *17.2 Lorentz Transformation
  • *17.3 Postulates of Special Relativity
  • *17.4 Space-Time Geometry (Four-Dimensional Space)-Four-Vectors and Four-Tensors
  • 17.4.1 Three-Dimensional Space-Euclidean Space
  • 17.4.2 Four-Dimensional Space-Minkowski Space
  • 17.4.3 Vector Properties of Four-Dimensional Space
  • 17.5 Relativistic Electrodynamics-Covariance of Electrodynamics
  • 17.6 Summary
  • Appendix I: System of Units
  • I.1 Force Laws-Origin of Systems
  • I.2 Electrostatics and Electromagnetic Systems
  • I.3 Gaussian System
  • Appendix II: Divergence, Curl, Gradients, and Laplacian
  • Appendix III: Some Fundamental Constants of Physics
  • Appendix IV: Some SI Derived Units with Special Names
  • Answers to Odd-Numbered Problems
  • Index

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

35,49 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok